На Международном конгрессе математиков 1912 года Эдмунд Ландау перечислил четыре главные проблемы в теории простых чисел. Эти проблемы были выражены в его докладе как «неприступные при текущем состоянии математики» и они известны теперь как проблемы Ландау.
Все четыре проблемы на 2019 год остаются открытыми.
Теорема Виноградова[en] доказывает слабую гипотезу Гольдбаха для достаточно большого n. В 2013 Харальд Хельфготт доказал слабую гипотезу для всех нечётных чисел больших 5[1]. В отличие от проблемы Гольдбаха, слабая гипотеза Гольдбаха утверждает, что любое нечётное число, большее 5, может быть выражено в виде суммы трёх простых чисел. Хотя сильная гипотеза Гольдбаха ни доказана, ни опровергнута, из её доказательства вытекало бы доказательство слабой гипотезы.
Теорема Чэня доказывает, что для всех достаточно больших n , где p простое, а q либо простое, либо полупростое. Монтгомери и Воган показали, что чётные числа, не представимые в виде суммы двух простых, имеет плотность нуль[2].
В 2015 Томохиро Ямада доказал явную версию теоремы Чэня[3]: любое чётное число, большее , является суммой простого числа и произведения не более чем двух простых.
Чжан Итан[4] показал, что существует бесконечно много простых пар с промежутком, ограниченным 70 миллионами, и этот результат был улучшен до промежутка длиной 246 при объединении с проектом «Polymath»[en][5]. При принятии обобщённой гипотезы Эллиота — Халберстама оценка улучшается до 6 (Мейнард[6], Голдстон, Пинц и Йылдырым[7]).
Чень показал, что имеется бесконечно много простых чисел p (позднее названных простыми числами Чэня), таких, что p+2 является простым или полупростым.
Достаточно проверить, что каждый промежуток между простыми числами, большими p, меньше величины . Таблица максимальных промежутков между простыми числами показывает, что гипотеза верна вплоть до 4×1018[8]. Контрпример около 1018 должен иметь промежуток в пятьдесят миллионов раз больше среднего промежутка. Матомаки показал, что существует не более нарушающих гипотезу примеров с последующим промежутком, большим . В частности,
Результат Ингема показывает, что существует простое между и для любого достаточно большого n[10].
Теорема Фридландера — Иванеца показывает, что бесконечно большое количество простых чисел имеют вид [11].
Иванец показал, что существует бесконечное количество чисел вида с максимум двумя простыми делителями[12][13].
Анкени доказал, что при верности обобщённой гипотезы Римана для L-функций на характерах Гекке[en] существует бесконечно много простых чисел вида с [14].
Дешуиллерс и Иванец[15], улучшив результат Хули[16] и Тодда[17], показали, что существует бесконечно много чисел вида с бо́льшим простым множителем по меньшей мере . Если заменить показатель на 2, получим утверждение гипотезы.
В обратную сторону, решето Бруна[en] показывает, что существует таких простых, меньших x.
Для улучшения этой статьи желательно: |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .