WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

В математике, преобразование Ханкеля порядка ν функции f(r) задаётся формулой:

где Jνфункция Бесселя первого рода порядка ν и ν  −1/2. Обратным преобразованием Ханкеля функции Fν(k) называют следующее выражение:

которое можно проверить с помощью ортогональности, описанной ниже. Преобразование Ханкеля является интегральным преобразованием. Оно было изобретено Германом Ханкелем и известно также под именем преобразование Бесселя — Фурье.

Область определения

Преобразование Ханкеля функции верно для любых точек на интервале , в которых функция непрерывна или кусочно-непрерывна с конечными скачками, и интеграл

конечен.

Возможно также расширить это определение (подобно тому, как это делается для преобразования Фурье), включив в него некоторые функции, интеграл которых бесконечен (например, ).

Ортогональность

Функции Бесселя формируют ортогональный базис с весом r:

для k и k' больше чем ноль.

Преобразование Ханкеля некоторых функций

для нечётных m

??? для четных m.

См

Ссылки

  • Gaskill, Jack D., «Linear Systems, Fourier Transforms, and Optics», John Wiley & Sons, New York, 1978. ISBN 0-471-29288-5
  • Polyanin, A. D. and Manzhirov, A. V., Handbook of Integral Equations, CRC Press, Boca Raton, 1998. ISBN 0-8493-2876-4

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии