WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Говорят, что группа почти проста, если она содержит неабелеву простую группу и содержится в группе автоморфизмов этой простой группы. В символьной записи группа A почти проста, если существует простая группа S, такая, что [1].

Примеры

  • Тривиально, неабелевы простые группы и полные группы автоморфизмов почти просты, но существуют примеры почти простых групп, не являющихся ни простыми, ни полными группами автоморфизмов.
  • Для или симметрическая группа является группой автоморфизмов простой знакопеременной группы так что является почти простой в этом тривиальном смысле.
  • Для существует чистый пример, так как находится чисто между простой группой и вследствие исключительных внешних автоморфизмов[en] группы . Две другие группы, группа Матьё и проективная полная линейная группа , также находятся чисто между и

Свойства

Группа автоморфизмов неабелевой простой группы является полной группой (отображение смежных классов является изоморфизмом в группу автоморфизмов), но собственная подгруппа полной группы автоморфизмов не обязательно полна.

Структура

Согласно гипотезе Шрайера[en], ныне повсеместно принятой как следствие классификации простых конечных групп, группа внешних автоморфизмов[en] конечной простой группы является разрешимой группой[2]. Таким образом, конечная простая группа является расширяемой разрешимой группы по простой группе.

См. также

Примечания

Литература

Ссылки

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии