Вывод формулы в двумерном случае
Известно, что функция
является решением задачи Дирихле для уравнения Лапласа в круге. Преобразуем это выражение с учётом выражений для коэффициентов Фурье:
Последнюю сумму можно вычислить при 0≤r<R:
Таким образом, в преобразованном виде интеграл Пуассона для круга приобретает вид:
Также формула может быть получена методом конформных отображений. Действительная и мнимая часть голоморфной на области
функции удовлетворяют на ней двумерному уравнению Лапласа. Известно, что при конформном отображении области
плоскости
на область
плоскости
уравнение Лапласа для функции
переходит в уравнение
. С помощью дробно-линейной функции легко получить отображение исходного круга радиуса
на единичный круг, при котором произвольная точка
переходит в центр. Такая функция имеет вид:
где
выбирается так, чтобы граничные точки исходного круга перешли в точки
, при этом
, а
произволен. Искомая функция
перейдёт в функцию
. Граничная функция
перейдёт в
. Тогда по теореме о среднем:
Из этого выражения можно получить явное выражение для решения задачи Дирихле в круге, если выразить
через
. Для граничных точек круга
и круга
формула дробно-линейного преобразования даёт
откуда
Производя замену переменной в интеграле, получим искомое выражение:
Это выражение эквивалентно вышеприведённому: