Бутылка Клейна (или Кляйна) — неориентируемая (односторонняя) поверхность, впервые описанная в 1882 году немецким математиком Ф. Клейном. Она тесно связана с лентой Мёбиуса и проективной плоскостью. Название, по-видимому, происходит от схожести написания слов нем. Fläche (поверхность) и нем. Flasche (бутылка).
Первое описание бутылки Клейна появилось в монографии Ф. Клейна «О теории Римана алгебраических функций и их интегралов», вышедшей в 1882 году. В ней Клейн так описывает эту поверхность[1][2]:
О ней можно составить себе представление, если вывернуть кусок каучуковой трубки и заставить его пересечься с самим собой таким образом, чтобы при соединении его концов его внешняя сторона соединилась бы с внутренней.
Оригинальный текст (нем.)Man kann sich von denselben ein Bild machen, indem man etwa ein Stück eines Kautschukschlauches umstülpt und nun so sich selbst durchdringen lässt, dass bei Zusammenbiegung der Enden die Aussenseite mit der Innenseite zusammenkommt.
Чтобы построить модель бутылки Клейна, понадобится бутылка с двумя дополнительными отверстиями: в донышке и в стенке. Горлышко бутылки нужно вытянуть, изогнуть вниз и, продев его через отверстие в стенке, присоединить к отверстию на дне бутылки. Для настоящей бутылки Клейна в четырёхмерном пространстве отверстие в стенке не нужно, но без него нельзя обойтись в трёхмерном евклидовом пространстве.
В отличие от обыкновенного стакана, у этого объекта нет «края», где бы поверхность резко заканчивалась. В отличие от воздушного шара, можно пройти путь изнутри наружу, не пересекая поверхность (то есть на самом деле у этого объекта нет «внутри» и нет «снаружи»).
Более формально, бутылку Клейна можно получить склеиванием квадрата , отождествляя точки при и при , как показано на первой диаграмме. Следующие диаграммы показывают как эта топология погружается в бутылочную форму 3D.
Если разрезать бутылку Клейна пополам вдоль её оси симметрии, то результатом будет лента Мёбиуса, изображённая справа (необходимо помнить, что изображённого пересечения на самом деле нет).
Бутылка Клейна в виде восьмёрки имеет довольно простую параметризацию:
В этом виде самопересечение имеет форму геометрического круга в плоскости XY. Константа равна радиусу круга. Параметр задаёт угол на плоскости XY и обозначает положение около 8-образного сечения.
![]() |
Бутылка Клейна на Викискладе |
---|
В этой статье не хватает ссылок на источники информации. |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .