WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Энергия (уровень) Фе́рми ( ) системы невзаимодействующих фермионов — это увеличение энергии основного состояния системы при добавлении одной частицы. Это эквивалентно химическому потенциалу системы в её основном состоянии при абсолютном нуле температур. Энергия Ферми может также интерпретироваться как максимальная энергия фермиона в основном состоянии при абсолютном нуле температур. Энергия Ферми — одно из центральных понятий физики твёрдого тела.

Физический смысл уровня Ферми: вероятность обнаружения частицы на уровне Ферми составляет 1/2 при любых температурах, кроме [1].

Название дано в честь итальянского физика Энрико Ферми.

Фермионы — частицы с полуцелым спином, обычно 1/2, такие как электроны — подчиняются принципу запрета Паули, согласно которому две одинаковые частицы, образуя квантово-механическую систему (например, атом), не могут принимать одно и то же квантовое состояние. Следовательно, фермионы подчиняются статистике Ферми — Дирака. Основное состояние невзаимодействующих фермионов строится начиная с пустой системы и постепенного добавления частиц по одной, последовательно заполняя состояния в порядке возрастания их энергии (например, заполнение электронами электронных орбиталей атома). Когда необходимое число частиц достигнуто, энергия Ферми равна энергии самого высокого заполненного состояния (или самого низкого незанятого состояния: в случае макроскопической системы различие не важно). Поэтому энергию Ферми называют также уровнем Фе́рми. Частицы с энергией, равной энергии Ферми, двигаются со скоростью, называемой скоростью Фе́рми (только в случае изотропного дисперсионного соотношения в среде).

В свободном электронном газе (квантово-механическая версия идеального газа фермионов) квантовые состояния могут быть помечены согласно их импульсу. Нечто подобное можно сделать для периодических систем типа электронов, движущихся в атомной решётке металла, используя так называемый квазиимпульс (Частица в периодическом потенциале). В любом случае, состояния с энергией Ферми расположены на поверхности в пространстве импульсов, известной как поверхность Ферми. Для свободного электронного газа, поверхность Ферми — поверхность сферы; для периодических систем она вообще имеет искаженную форму. Объём, заключённый под поверхностью Ферми, определяет число электронов в системе, и её топология непосредственно связана с транспортными свойствами металлов, например, электрической проводимостью. Поверхности Ферми большинства металлов хорошо изучены экспериментально и теоретически.

Уровень Ферми при ненулевых температурах

Для важного случая электронов в металле при всех разумных температурах можно считать . Такую ситуацию называют вырожденным ферми-газом. (В другом предельном случае ферми-газ называют невырожденным, числа заполнения невырожденного ферми-газа малы и его можно описывать классической больцмановской статистикой.)

В качестве уровня Ферми можно выбрать уровень, заполненный ровно наполовину (то есть вероятность находящегося на искомом уровне состояния быть заполненным частицей должна быть равна 1/2).

Энергия Ферми свободного ферми-газа связана с химическим потенциалом уравнением

где  — энергия Ферми,  — постоянная Больцмана, и  — температура. Следовательно, химический потенциал приблизительно равен энергии Ферми при температурах намного меньше характерной температуры Ферми . Характерная температура имеет порядок 105 K для металла, следовательно при комнатной температуре (300 K), энергия Ферми и химический потенциал фактически эквивалентны. Это существенно, потому что химический потенциал не является энергией Ферми, которая входит в распределение Ферми — Дирака[источник не указан 427 дней].

Энергия, температура и скорость Ферми

Элемент Энергия Ферми, эВ Температура Ферми, ×10 000 K Скорость Ферми, ×1000 км/с
Li 4,74 5,51 1,29
Na 3,24 3,77 1,07
K 2,12 2,46 0,86
Rb 1,85 2,15 0,81
Cs 1,59 1,84 0,75
Cu 7,00 8,16 1,57
Ag 5,49 6,38 1,39
Au 5,53 6,42 1,40
Be 14,3 16,6 2,25
Mg 7,08 8,23 1,58
Ca 4,69 5,44 1,28
Sr 3,93 4,57 1,18
Ba 3,64 4,23 1,13
Nb 5,32 6,18 1,37
Fe 11,1 13,0 1,98
Mn 10,9 12,7 1,96
Zn 9,47 11,0 1,83
Cd 7,47 8,68 1,62
Hg 7,13 8,29 1,58
Al 11,7 13,6 2,03
Ga 10,4 12,1 1,92
In 8,63 10,0 1,74
Tl 8,15 9,46 1,69
Sn 10,2 11,8 1,90
Pb 9,47 11,0 1,83
Bi 9,90 11,5 1,87
Sb 10,9 12,7 1,96
Ni 11,67 2,04
Cr 6,92 1,56

Связь энергии Ферми и концентрации электронов проводимости

Концентрация электронов проводимости в вырожденных полупроводниках связана с расстоянием от края частично заполненной энергетической зоны до уровня Ферми. Эту положительную величину иногда тоже называют энергией Ферми, по аналогии с энергией Ферми свободного электронного газа, которая, как известно, положительна.

В металлах обычно имеется несколько частично заполненных энергетических зон, поэтому указать точный вид зависимости концентрации свободных носителей заряда от положения уровня Ферми не представляется возможным.

См. также

Примечания

Литература

  • Гусев В. Г., Гусев Ю. М. Электроника. — М.: Высшая школа, 1991. — С. 53. — ISBN 5-06-000681-6.

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2024
WikiSort.ru - проект по пересортировке и дополнению контента Википедии