WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Электронная промышленность России — отрасль промышленности России, развивающая электронную технику.

На 2018 год СМИ со ссылкой на интервью министра промышленности и торговли Дениса Мантурова сообщали, что в России производится микроэлектроника "по типоразмеру до 65 нанометров".[1][2]

Предприятия

Холдинг «Росэлектроника» консолидирует большинство крупных российских предприятий и научно-исследовательских институтов в области электронной промышленности. Холдинг основан в 1997 году, на момент создания в него входило 33 предприятия электронной промышленности[3]. В настоящее время в состав холдинга входит 123 предприятия, которые специализируются на разработке и производстве изделий электронной техники, электронных материалов и оборудования для их изготовления, полупроводниковых приборов и технических средств связи[4].
В частности, в состав холдинга входят такие предприятия, как "Ангстрем", "Элма", "Светлана", завод «Метеор», АО "Московский электроламповый завод", НИИ газоразрядных приборов «Плазма», НПП «Исток», НПП «Пульсар», АО «НИИЭТ» и др.[5]

История

Первый универсальный программируемый компьютер в континентальной Европе был создан командой учёных под руководством С. А. Лебедева из Киевского института электротехники СССР. ЭВМ МЭСМ (Малая электронная счётная машина) заработала в 1950 году. Она содержала около 6000 электровакуумных ламп и потребляла 15 кВт. Машина могла выполнять около 3000 операций в секунду.

Первой советской серийной ЭВМ стала «Стрела», производимая с 1953 на Московском заводе счётно-аналитических машин. «Стрела» относится к классу больших универсальных ЭВМ с трёхадресной системой команд. ЭВМ имела быстродействие 2-3 тыс. операций в секунду. В качестве внешней памяти использовались два накопителя на магнитной ленте емкостью 200 тыс. слов, объём оперативной памяти — 2048 ячеек по 43 разряда. Машина состояла из 6200 ламп, 60 000 полупроводниковых диодов и потребляла 150 кВт энергии.

«Сетунь» была первой ЭВМ на основе троичной логики, разработана в 1958 году в Советском Союзе.

Первыми советскими серийными полупроводниковыми ЭВМ стали «Весна» и «Снег», выпускаемые с 1964 по 1972 год. Пиковая производительность ЭВМ «Снег» составила 300 000 операций в секунду. Машины изготавливались на основе транзисторов с тактовой частотой 5 МГц. Всего было выпущено 39 ЭВМ.

Наилучшей советской ЭВМ II-го поколения считается БЭСМ-6, созданная в 1966 году. В архитектуре БЭСМ-6 впервые был широко использован принцип совмещения выполнения команд (до 14 одноадресных машинных команд могли находиться на разных стадиях выполнения). Механизмы прерывания, защиты памяти и другие новаторские решения позволили использовать БЭСМ-6 в мультипрограммном режиме и режиме разделения времени. ЭВМ имела 128 КБ оперативной памяти на ферритовых сердечниках и внешнюю память на магнитных барабанах и ленте. БЭСМ-6 работала с тактовой частотой 10 МГц и рекордной для того времени производительностью — около 1 млн операций в секунду. Всего было выпущено 355 ЭВМ.

В 1971 году появились первые машины серии ЕС ЭВМ.

Создание ЭВМ для боевых систем ПРО и ПВО

Успешные испытания системы А дали значительный импульс развитию вычислительной техники. Начинается разработка ЭВМ для противоракетной обороны Москвы, Бурцев становится заместителем директора ИТМиВТ Лебедева и основным исполнителем по военным заказам. В 1961 - 1967 гг. для системы ПРО А-35 создается серия высокопроизводительных двухпроцессорных ЭВМ 5Э92 (5Э92б полупроводниковый вариант, 5Э51 серийная модификация) и вычислительная сеть на их базе, состоящая из 12 машин с полным аппаратным контролем и автоматическим резервированием. Кроме системы ПРО, 5Э51 используется в Центре контроля космического пространства (ЦККП) и многих информационных и научных центрах военного профиля [10]. В 1972 году за эту работу группа ученых во главе с В.С. Бурцевым удоставивается Государственной премии СССР [6].

С 1968 года Всеволод Бурцев руководит разработкой вычислительных средств для будущего ЗРК С-300. К 1972–1974 г. создана трехпроцессорная модульная ЭВМ 5Э26 и, позднее, её модификации 5Э261, 5Э262, 5Э265 и 5Э266, которые сменил пятипроцессорный ЦВК 40У6 (1988 год) [11].

В 1970 году, в рамках создания второго поколения ПРО конструктора Г.В. Кисунько, в ИТМиВТ началась разработка перспективного вычислительного комплекса «Эльбрус» с производительностью 100 млн. оп./с., главным конструктором проекта становится В. С. Бурцев (В 1973 году он сменяет, ушедшего по состоянию здоровья, С.А. Лебедева на посту директора ИТМиВТ). Высокую производительность планируется получить используя большой опыт института в области многопроцессорных параллельных архитектур (ранее это использовалось в основном для достижения высокого уровня надёжности при относительно невысоком качестве комплектующих отечественного минрадиопрома). Первый «Эльбрус-1» (1978 год) из за устаревшей элементарной базы имел невысокую производительность (15 млн. оп./с.), более поздняя модификация «Эльбрус-2» (1985 год) в 10-процессорном исполнении достигла 125 млн. оп./с.[10] и стала первым промышленным компьютером с суперскалярной архитектурой и самым мощным суперкомпьютером СССР, «Эльбрус-2» эксплуатировались в ядерных НИИ ЦУПе и в системе ПРО А-135, за его разработку В. С. Бурцев и ряд других специалистов были удостоены Государственной премии [12].

Работы в области перспективных многопроцессорных ЭВМ

В рамках дальнейшей модернизации суперЭВМ под руководством Бурцева разрабатывается векторный процессор с быстродействием 200 – 300 млн оп./с, введение которого в МВК «Эльбрус» могло поднять производительность до 1 млрд оп/с, однако в 1985 году, после 35 лет работы в ИТМиВТ, обстоятельства заставляют его перейти на должность заместителя директора (с 1992 г. директор) Вычислительного центра коллективного пользования (ВЦКП) АН СССР. На новой должности Бурцев продолжает развивать идеи высокоскоростных параллельных вычислений в рамках проекта "Оптической сверхвысокопроизводительной машины" (ОСВМ) Академии наук 13, разрабатывая структуру суперЭВМ на «не Фон-Неймановском принципе» с эффективным распараллеливанием вычислительного процесса на аппаратном уровне 10.

После распада СССР Российская Академия наук сворачивает фронт работ над суперЭВМ и ВЦКП закрывается. В 1995 году Бурцев самостоятельно организует Институт высокопроизводительных вычислительных систем (ИВВС) в котором продолжает работу, однако из за отсутствия интереса к данной теме со стороны Академии наук и отсутствия финансирования практического продолжения направление не получает.

Постсоветское время

В 1990-х годах электронная промышленность находилась в упадке из-за острого финансового и политического кризиса, а также отсутствия заказов на разработку и создание новых изделий. Военные заказы к 2007 г. уменьшились в 6-8 раз.

«Стратегия развития электронной промышленности РФ до 2025 г.» (утверждена в августе 2007 министром промышленности и энергетики РФ Виктором Христенко) — констатируется утрата на 40-50 % технологий производства электронной компонентной базы (ЭКБ), разработанной в СССР 1970-1980-х; наблюдается прогрессирующее технологическое отставание РФ в области твердотельной СВЧ-электроники (снижается конкурентоспособность производимых в РФ вооружений — теперь их приходится на 70 % оснащать импортной электроникой; аналогичные проблемы возникают и в космической отрасли). К 2007 г. доля РФ на мировом рынке ЭКБ составляла всего 0,23 %; на внутреннем рынке ЭКБ промышленность РФ обеспечивает только 37,5 % спроса.

В 2008 году была запущена Федеральная целевая программа “Развитие электронной компонентной базы и радиоэлектроники” на 2008-2015 годы[6].

В 2013 году в Зеленограде был открыт Центр проектирования, каталогизации и производства фотошаблонов (ЦФШ) для изготовления интегральных схем (ИС), создававшийся в два этапа с 2006 года. Центр позволяет проектировать и изготавливать фотошаблоны различных типов и является единственным предприятием по производству фотошаблонов в РФ[7][8].

Микроэлектроника

Динамика производства интегральных схем в России в 1997—2009 годах, в млрд штук[9]

В 2008 году темпы роста микроэлектроники в России были около 25 %, а в 2009 году — около 15 %, что превышало темпы роста других отраслей российской промышленности.[10] В феврале 2010 года замминистра промышленности и торговли России Юрий Борисов заявил, что реализация стратегии правительства России в области микроэлектроники сократила технологическое отставание российских производителей от западных до 5 лет (до 2007 года это отставание оценивалось в 20-25 лет)[10].

Российская группа предприятий «Ангстрем» и компания «Микрон» являются одними из крупнейших производителей интегральных схем в Восточной Европе[11]. Около 20 % продукции «Микрона» экспортируется[12].

В октябре 2009 года была учреждена компания «СИТРОНИКС-Нано» для работы над проектом по созданию в России производства интегральных схем размером 90 нм[13]. «Ситроникс-нано» достраивает фабрику по выпуску таких микрочипов, которая должна начать работать в 2011 г. Такие чипы можно использовать для выпуска SIM-карт, цифровых телеприставок, приемников ГЛОНАСС и др. Стоимость проекта составит 16,5 млрд рублей[14].

К концу 2010 года в России было начато производство чипов по технологии 90 нм, используемых, в частности, в мобильных телефонах российского производства[15].

Существуют планы создания единого инновационного Центра для исследований и разработок, аналога «Кремниевой долины» в США[16], характерной чертой которого станет большая плотность высокотехнологичных компаний. Место будущего центра должно быть определено в ближайшем будущем[17]. Помощник президента Аркадий Дворкович предостерег от сравнения будущего инновационного центра с известным центром компьютерных технологий в США. По его словам, «прямое сравнение здесь не подходит», «в будущем российском центре не будет такого фокуса на одной области, в частности, компьютерных технологиях»[18].

Производство микропроцессоров

В советское время одним из самых востребованных из-за его непосредственной простоты и понятности стал задействованный в учебных целях МПК КР580 — набор микросхем, копия набора микросхем Intel 82xx. Использовался в отечественных компьютерах, таких, как Радио 86РК, ЮТ-88, Микроша и т. д.

Разработкой микропроцессоров в России занимаются ЗАО «МЦСТ», НИИСИ РАН, АО «НИИЭТ» и ЗАО «ПКК Миландр». Также разработку специализированных микропроцессоров, ориентированных на создание нейронных систем и цифровую обработку сигналов, ведут НТЦ «Модуль» и ГУП НПЦ «ЭЛВИС». Ряд серий микропроцессоров также производит ОАО «Ангстрем».

НИИСИ РАН разрабатывает процессоры серии «Комдив» на основе архитектуры MIPS. Техпроцесс — 0,5 мкм, 0,3 мкм; КНИ.

  • КОМДИВ-32, 1890ВМ1Т, в том числе в варианте КОМДИВ32-С (5890ВЕ1Т), стойком к воздействию факторов космического пространства (ионизирующему излучению)
  • КОМДИВ-64, КОМДИВ64-СМП
  • Арифметический сопроцессор КОМДИВ128

ЗАО ПКК Миландр разрабатывает 16-разрядный процессор цифровой обработки сигналов и 2-ядерный процессор:

  • 2011 год, 1967ВЦ1Т[19] — 16-разрядный процессор цифровой обработки сигналов, частота 50 МГц, КМОП 0,35 мкм
  • 2011 год, 1901ВЦ1Т — 2-ядерный процессор, DSP (100 МГц) и RISC (100 МГц), КМОП 0,18 мкм

НТЦ «Модуль» разработал и предлагает микропроцессоры семейства NeuroMatrix:[20]

  • 1998 год, 1879ВМ1 (NM6403) — высокопроизводительный специализированный микропроцессор цифровой обработки сигналов с векторно-конвейерной VLIW/SIMD архитектурой. Технология изготовления — КМОП 0,5 мкм, частота 40 МГц.
  • 2007 год, 1879ВМ2 (NM6404) — модификация 1879ВМ1 с увеличенной до 80 МГц тактовой частотой и 2Мбитным ОЗУ, размещённым на кристалле процессора. Технология изготовления — 0,25 мкм КМОП.
  • 2009 год, 1879ВМ4 (NM6405) — высокопроизводительный процессор цифровой обработки сигналов с векторно-конвейерной VLIW/SIMD архитектурой на базе запатентованного 64-разрядного процессорного ядра NeuroMatrix. Технология изготовления — 0,25 мкм КМОП, тактовая частота 150 МГц.
  • 2011 год, 1879ВМ5Я (NM6406) — высокопроизводительный процессор цифровой обработки сигналов с векторно-конвейерной VLIW/SIMD архитектурой на базе запатентованного 64-разрядного процессорного ядра NeuroMatrix. Технология изготовления — 90нм КМОП, тактовая частота — 300 МГц.
  • СБИС 1879ВМ3 — программируемый микроконтроллер с ЦАП и АЦП. Частота выборок — до 600 МГц (АЦП) и до 300 МГц (ЦАП). Максимальная тактовая частота — 150 МГц.[21]

ГУП НПЦ ЭЛВИС разрабатывает и производит микропроцессоры серии «Мультикор»[22], отличительной особенностью которых является несимметричная многоядерность. При этом физически в одной микросхеме содержатся одно CPU RISC-ядро с архитектурой MIPS32, выполняющее функции центрального процессора системы, и одно или более ядер специализированного процессора-акселератора для цифровой обработки сигналов с плавающей/фиксированной точкой ELcore-xx (ELcore = Elvees’s core), основанного на «гарвардской» архитектуре. CPU-ядро является ведущим в конфигурации микросхемы и выполняет основную программу. Для CPU-ядра обеспечен доступ к ресурсам DSP-ядра, являющегося ведомым по отношению к CPU-ядру. CPU микросхемы поддерживает ядро ОС Linux 2.6.19 или ОС жесткого реального времени QNX 6.3 (Neutrino).

  • 2004 год, 1892ВМ3Т (MC-12) — однокристальная микропроцессорная система с двумя ядрами. Центральный процессор — MIPS32, сигнальный сопроцессор — SISD ядро ELcore-14. Технология изготовления — КМОП 250 нм, частота 80 МГц. Пиковая производительность 240 MFLOPs (32 бита).
  • 2004 год, 1892ВМ2Я (MC-24) — однокристальная микропроцессорная система с двумя ядрами. Центральный процессор — MIPS32, сигнальный сопроцессор — SIMD ядро ELcore-24. Технология изготовления — КМОП 250 нм, частота 80 МГц. Пиковая производительность 480 MFLOPs (32 бита).
  • 2006 год, 1892ВМ5Я (MC-0226) — однокристальная микропроцессорная система с тремя ядрами. Центральный процессор — MIPS32, 2 сигнальных сопроцессора — MIMD ядро ELcore-26. Технология изготовления — КМОП 250 нм, частота 100 МГц. Пиковая производительность 1200 MFLOPs (32 бита).
  • 2008 год, NVCom-01 («Навиком») — однокристальная микропроцессорная система с тремя ядрами. Центральный процессор — MIPS32, 2 сигнальных сопроцессора — MIMD DSP-кластер DELCore-30 (Dual ELVEES Core). Технология изготовления — КМОП 130 нм, частота 300 МГц. Пиковая производительность — 3600 MFLOPs (32 бита). Разработан в качестве телекоммуникационного микропроцессора, содержит встроенную функцию 48-канальной ГЛОНАСС/GPS-навигации.
  • 2012 год, 1892ВМ7Я (ранее был известен как MC-0428) — однокристальная микропроцессорная гетерогенная система с четырьмя ядрами. Новый центральный процессор — MIPS RISCore32F64 с интегрированным 32-/64-разрядным математическим акселератором и 2*16Кбайт (16К команды и 16К данные) кэш памятью первого уровня, 3 сигнальных сопроцессора — модернизированное MIMD-ядро ELcore. Технология изготовления — КМОП 130 нм, частота 300 МГц. Пиковая производительность 9600 MFLOPs (32 бита). Корпус BGA-756.
  • 2012 год, NVCom-02T («Навиком-02Т») — однокристальная микропроцессорная система с тремя гетерогенными ядрами. Ведущий процессор — RISCore32F64, сигнальные сопроцессоры — MIMD DSP-кластер DELCore-30М. Сигнальные сопроцессоры организованы в двухпроцессорный кластер, поддерживающий вычисления с плавающей и фиксированной точкой, и интегрированный с 48-и канальным коррелятором для ГЛОНАСС/GPS-навигации. Сигнальные ядра имеют ряд новых возможностей, в том числе аппаратные команды для обработки графики (IEEE-754), аппаратную реализацию кодирования/декодирования по Хаффману; расширены возможности использования внешних прерываний; организован доступ ядер DSP к внешнему адресному пространству, возможно отключение частоты только от CPU. Технология изготовления — КМОП 130 нм, частота 250 МГц. Пиковая производительность — 4,0 GFLOPs (32 бита). Имеет пониженную потребляемую мощность.

В качестве перспективной модели представляется микропроцессор под обозначением «Мультиком-02» (MCom-02), позиционируемый как мультимедийный сетевой многоядерный процессор.

ОАО «Multiclet» разрабатывает и производит на сторонних мощностях микропроцессоры по запатентованной ею мультиклеточной технологии.

  • 2012 год, MCp0411100101 — универсальный микропроцессор, ориентированный на задачи управления и цифровой обработки сигналов. Поддерживает аппаратные операции с плавающей запятой. Технология изготовления — КМОП 180 нм, частота 100 МГц. Пиковая производительность 2,4 GFLOPs (32 бита). Приёмка — ОТК 1,3 и 5.

ОАО «Ангстрем» производит (не разрабатывает) следующие серии микропроцессоров:

  • 1839 — 32-разрядный VAX-11/750-совместимый микропроцессорный комплект из 6 микросхем. Технология изготовления — КМОП, тактовая частота 10 МГц.
  • 1836ВМ3 — 16-разрядный LSI-11/23-совместимый микропроцессор. Программно совместим с PDP-11 фирмы DEC. Технология изготовления — КМОП, тактовая частота — 16 МГц.
  • 1806ВМ2 — 16-разрядный LSI/2-совместимый микропроцессор. Программно совместим с LCI-11 фирмы DEC. Технология изготовления — КМОП, тактовая частота — 5 МГц.
  • Л1876ВМ1 32-разрядный RISC-микропроцессор. Технология изготовления — КМОП, тактовая частота — 25 МГц.

Из собственных разработок Ангстрема можно отметить однокристальную 8-разрядную RISC микроЭВМ Тесей.

Компанией МЦСТ разработано и внедрено в производство семейство универсальных SPARC-совместимых RISC-микропроцессоров с проектными нормами 90, 130 и 350 нм и частотами от 150 до 1000 МГц (подробнее см. статью о серии — МЦСТ-R и о вычислительных комплексах на их основе «Эльбрус-90микро»). Также разработан VLIW-процессор «Эльбрус» с оригинальной архитектурой ELBRUS, используется в комплексах «Эльбрус-3М1»). Прошёл государственные испытания и рекомендован к производству новый процессор «Эльбрус-2С+», отличающийся от процессора «Эльбрус» тем, что содержит два ядра на архитектуре VLIW и четыре ядра DSP (Elcore-09). Основные потребители российских микропроцессоров — предприятия ВПК.

История развития процессоров МЦСТ:

  • 1998 год, SPARC-совместимый микропроцессор с технологическими нормами 500 нм и частотой 80 МГц.
  • 2001 год, МЦСТ-R150 — SPARC-совместимый микропроцессор с технологическими нормами 350 нм и тактовой частотой 150 МГц.
  • 2003 год, МЦСТ-R500 — SPARC-совместимый микропроцессор с технологическими нормами 130 нм и тактовой частотой 500 МГц.
  • 2004 год, «Эльбрус 2000» (E2K) — микропроцессор с технологическими нормами 130 нм и тактовой частотой 300 МГц. E2K имеет разработанную российскими учёными вариант архитектуры явного параллелизма, аналог VLIW/EPIC.
  • Январь 2005 года
  • Успешно завершены государственные испытания МЦСТ-R500. Этот микропроцессор явился базовым для пяти новых модификаций вычислительного комплекса «Эльбрус-90микро», успешно прошедших типовые испытания в конце 2004 года.
  • На базе МЦСТ-R500 в рамках проекта «Эльбрус-90микро» создан микропроцессорный модуль МВ/C, фактически являющийся одноплатной ЭВМ.
  • На базе ядра МЦСТ-R500 начата разработка двухпроцессорной системы на кристалле (СНК) МЦСТ-R500S. На кристалле будут также размещены все контроллеры, обеспечивающие её функционирование как самостоятельной ЭВМ. На базе СНК планируется создание семейств новых малогабаритных носимых вычислительных устройств — ноутбуков, наладонников, GPS-привязчиков и т. п.
  • Май 2005 года — получены первые образцы микропроцессора Эльбрус 2000.

Производство светодиодов

На протяжении некоторого времени, крупнейшим сборщиком светодиодов в России и Восточной Европе являлась компания «Оптоган»[23], созданная при поддержке ГК «Роснано». Производственные мощности компании расположены в Санкт-Петербурге. «Оптоган» занимается как производством светодиодов из иностранных компонентов, так и чипов и матриц, а также участвует во внедрении светодиодов для общего освещения; но производственные мощности были заморожены в конце 2012 года[24].

Крупным предприятием по производству светодиодов и устройств на их основе также можно назвать завод Samsung Electronics в Калужской области.

В мае 2011 года госхолдинг «Российская электроника» объявил о планах создать, в особой экономической зоне в Томской области, завод полного цикла (кластер) по производству светодиодных светильников, на базе научно-исследовательского института полупроводниковых приборов (НИИПП)[25]. Стоимость проекта оценивается в 6,5 млрд рублей. В 2014 г. идет проектирование корпуса светодиодного кластера, в этом же году закупят оборудование, в 2015 – корпус начнут строить[26] (ранее ввод завода в строй ожидался в 2013 году).

См. также

Ссылки

Примечания

  1. Россия на фоне санкций успешно замещает электронику и комплектующие двойного назначения из США продукцией из Юго-Восточной Азии // Взгляд, 27 августа 2018
  2. Мантуров рассказал о работе по импортозамещению - РИА Новости, 27.08.2018
  3. У российской электронной промышленности появился свой холдинг // Русский телеграф, номер от 25.12.1997, выпуск №69
  4. http://www.cnews.ru/news/top/index.shtml?2013/07/19/535974 Архивная копия от 24 декабря 2014 на Wayback Machine CNews - «Российская электроника» будет реформироваться под новым руководством, 19.07.2013
  5. Список дочерних предприятий холдинга «Росэлектроника» на официальном сайтИЭТ»]е компании]
  6. Постановление Правительства РФ от 26 ноября 2007 г. N 809 "О федеральной целевой программе "Развитие электронной компонентной базы и радиоэлектроники" на 2008-2015 годы
  7. «Росэлектроника» поддержит новые микроэлектронные производства и технологические центры в Зеленограде
  8. PCWeek - Запущен новый зеленоградский “Центр изготовления фотошаблонов” // pcweek.ru, 08.10.2013
  9. Производство промышленной продукции в натуральном выражении (год)
  10. 1 2 Реализация стратегии правительства РФ в области микроэлектроники к 2010 году сократила до 5 лет отставание отечественных производителей от западных // АРМС-ТАСС, 26 февраля 2010
  11. АМD поделилась нанометрами // Итоги, 1 декабря 2007
  12. РБК daily: Россия получит доступ к технологиям, на которые приходится 80 % мирового рынка микроэлектроники, 20.12.2010
  13. "Банк Москвы" открывает для "СИТРОНИКС-Нано" аккредитив на 27 млн евро для финансирования передачи лицензий и технологии / Финам, 05.03.2011
  14. Как помочь микрочипу// accord-audit.ru, 28 августа 2010 Архивная копия от 20 мая 2013 на Wayback Machine
  15. Путину показали российский аналог iPhone 4 / Lenta.ru, 2010-12-28
  16. Расположение «Кремниевой долины» в РФ определят через 10 дней / РБК, 2010-03-10
  17. Российским аналогом Кремниевой долины займется Чубайс. Lenta.ru (10 марта 2010). Проверено 14 августа 2010. Архивировано 18 февраля 2012 года.
  18. Для города будущего ищут место / Дни.ру, 2010-03-10
  19. 1967ВЦ1Т − Миландр
  20. Информация о микропроцессорах производства НТЦ Модуль
  21. НТЦ «Модуль»
  22. Информация о микропроцессорах производства ГУП НТЦ Элвис
  23. «Российский производитель светодиодов „Оптоган“ приобрел завод „Элкотек“ в Петербурге у люксембургской Elcoteq SE»
  24. Красивая история нанотехнологий разбилась о рынок // Коммерсантъ, 16.12.2015
  25. Томский НИИПП начал серийное производство светодиодов // RusСable.ru, 26 августа 2011
  26. Светодиодный кластер будет создан в Томске // RusСable.ru, 17 февраля 2014

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2024
WikiSort.ru - проект по пересортировке и дополнению контента Википедии