Фундаментальный дискриминант D — это целочисленный инвариант в теории целочисленных квадратичных форм от двух переменных (бинарных квадатичных форм). Если является квадратичной формой с целыми коэффициентами, то является дискриминантом формы Q(x, y).
Существуют явные условия конгруэнтности, которые дают множество фундаментальных дискриминантов. Конкрентно — D является фундаментальным дискриминантом тогда и только тогда, когда выполняются следующие условия
Первые десять положительных фундаментальных дискриминантов:
Первые десять отрицательных фундаментальных дискриминантов:
Есть связь теории целочисленных бинарных квадратичных форм и арифметикой квадратичных числовых полей. Основное свойство этой связи — D0 является фундаментальным дискриминантом тогда и только тогда, когда или D0 является дискриминантом квадратичного числового поля. Существует в точности одно, с точностью до изоморфизма, квадратичное поле для любого фундаментального дискриминанта .
Предупреждение: Существует причина, по которой некоторые авторы не считают 1 фундаментальным дискриминантом — можно рассматривать как вырожденное «квадратичное» поле Q (рациональные числа).
Фундаментальные дискриминанты можно описать их разложением на положительные и отрицательные простые числа. Определим множество
где простые числа ≡ 1 (mod 4) берутся положительными, а числа, сравнимые с 3, берутся отрицательными. Тогда число является фундаментальным дискриминантом тогда и только тогда, когда оно является произведением взаимно простых членов S.
Для улучшения этой статьи желательно: |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .