Квадратичное поле — алгебраическое числовое поле степени 2 над . Можно доказать, что отображение задаёт биекцию между множеством свободных от квадратов целых чисел и множеством всех попарно неизоморфных квадратичных полей. Если квадратичное поле называется действительным, в противном случае — мнимым или комплексным.
Для любого алгебраического числового поля можно рассмотреть его кольцо целых, то есть множество элементов, являющихся корнями приведенных многочленов с целыми коэффициентами. В случае квадратичного поля это корни приведенных квадратных уравнений с целыми коэффициентами, все числа такого вида нетрудно описать.
Пусть — свободное от квадратов целое число, сравнимое с 2 или 3 по модулю 4. Тогда кольцо целых соответствующего квадратичного поля (обозначаемое ) — это множество линейных комбинаций вида (квадратичных иррациональностей), где , с обычными операциями сложения и умножения комплексных чисел. Соответственно, если , кольцо целых состоит из чисел вида , где .
Дискриминант квадратичного поля равен d, когда d сравнимо с 1 по модулю 4, и 4d в противном случае. Например, дискриминант поля гауссовых рациональных чисел равен −4.
Любое кольцо целых является дедекиндовым, поэтому для любого его идеала существует и единственно разложение на простые идеалы. Пусть p — простое число, тогда для главного идеала, порожденного p в (K — произвольное квадратичное поле) возможны следующие три случая:
Третий случай происходит тогда и только тогда, когда p делит дискриминант поля D (например, идеал (2) является квадратом идеала (1+i) в кольце гауссовых целых чисел). Первый и второй случаи происходят когда символ Кронекера равен −1 и 1 соответственно.
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .