WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте
Кривая и её трубчатая окрестность.

Формула трубки или формула Вейля — выражение для объёма -окрестности подмногообразия как многочлен от . Предложена Германом Вейлем.

Формулировка

Пусть замкнутое -мерное подмногообразие в -мерном евклидовом пространстве, соответственно есть коразмерность .

Обозначим через -окрестность . Тогда для всех достаточно малых положительных значений выполняется равенство

где — объём , — объём единичного шара в -мерном евклидовом пространстве. и

для некоторого однородного многочлена степени ; здесь обозначает тензор кривизны.

Выражение — это так называемая кривизна Липшица — Киллинга, она пропоциональна среднему пфафиану тензора кривизны по всем -мерным подпространствам касательного пространства.

Замечания

  • Младший ненулевой коэффициент есть -мерный объём .
  • Если размерность чётна, , то
где эйлерова характеристика .

Следствия

  • Объём -окрестности простой замкнутой гладкой кривой в -мерном евклидовом пространстве при малых выражается формулаой
где обозначает длину .
  • Для гладких замкнутой поверхности в 3-мерном евклидовом пространстве выполняется равенство
  • Если два подмногообразия евкидова пространства изометричны, то объёмы их -окрестностей совпадают для всех малых положительных .

Вариации и обобщения

  • Формула полутрубки для гиперповерхностей выражает объём односторонней -окрестности , она также является многочленом от , но не все коэффициенты зависят от внутренней кривизны. В частности для поверхностей в трёхмерном пространстве формула полутрубки принимает вид
где обозначает среднюю кривизну.

См. также

Литература

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии