Теорема Линдемана — Вейерштрасса, являющаяся обобщением теоремы Линдемана, доказывает трансцендентность большого класса чисел. Теорема утверждает следующее[1]:
Если — различные алгебраические числа, линейно независимые над , то являются алгебраически независимыми над , то есть, степень трансцендентности расширения равна |
Часто используется другая эквивалентная формулировка[2]:
Для любых различных алгебраических чисел числа являются линейно независимыми над полем алгебраических чисел . |
В 1882 Линдеман доказал, что трансцендентно для любого ненулевого алгебраического [3], а в 1885 Карл Вейерштрасс доказал более общее утверждение, приведённое выше.
Из теоремы Линдемана — Вейерштраса легко следует трансцендентность чисел e и π.
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .