WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Теорема Линдемана — Вейерштрасса, являющаяся обобщением теоремы Линдемана, доказывает трансцендентность большого класса чисел. Теорема утверждает следующее[1]:

Если — различные алгебраические числа, линейно независимые над , то являются алгебраически независимыми над , то есть, степень трансцендентности расширения равна

Часто используется другая эквивалентная формулировка[2]:

Для любых различных алгебраических чисел числа являются линейно независимыми над полем алгебраических чисел .

История

В 1882 Линдеман доказал, что трансцендентно для любого ненулевого алгебраического [3], а в 1885 Карл Вейерштрасс доказал более общее утверждение, приведённое выше.

Из теоремы Линдемана — Вейерштраса легко следует трансцендентность чисел e и π.

Ссылки

  1. Weisstein, Eric W. Lindemann–Weierstrass theorem (англ.) на сайте Wolfram MathWorld.
  2. Alan Baker. Transcendental Number Theory. — Cambridge University Press, 1975. ISBN 052139791X.. Chapter 1, Theorem 1.4.
  3. F. Lindemann. Über die Zahl π // Mathematische Annalen. Т. 20 (1882). С. 213-225.

Литература

  • Шидловский А. Б. «Диофантовы приближения и трансцендентные числа» (М. ФИЗМАТЛИТ, 2007) ISBN 978-5-9221-0720-4

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии