WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте
График «тёмного солитона»

Солито́н — структурно устойчивая уединённая волна, распространяющаяся в нелинейной среде.

Солитоны ведут себя подобно частицам (частицеподобная волна): при взаимодействии друг с другом или с некоторыми другими возмущениями они не разрушаются, а продолжают движение, сохраняя свою структуру неизменной. Это свойство может использоваться для передачи данных на большие расстояния без помех.

История изучения солитона началась в августе 1834 года на берегу канала Юнион вблизи Эдинбурга. Джон Скотт Рассел наблюдал на поверхности воды явление, которое он назвал уединённой волной — «solitary wave»[1][2][3].

Впервые понятие солитона было введено для описания нелинейных волн, взаимодействующих как частицы[4].

Солитоны бывают различной природы:

  • на поверхности жидкости[5] (первые солитоны, обнаруженные в природе[6]), иногда считают таковыми волны цунами и бор[7]
  • ионозвуковые и магнитозвуковые солитоны в плазме[8]
  • гравитационные солитоны в слоистой жидкости[9]
  • солитоны в виде коротких световых импульсов в активной среде лазера[10]
  • можно рассматривать в качестве солитонов нервные импульсы[11]
  • солитоны в нелинейно-оптических материалах[12][13]
  • солитоны в воздушной среде [14]

Математическая модель

Уравнение Кортевега — де Фриза

Распад синусоидальной волны на солитоны, наблюдавшийся Забуски и Крускалом при численном решении уравнения КдФ

Одной из простейших и наиболее известных моделей, допускающих существование солитонов в решении, является уравнение Кортевега — де Фриза:

Одним из возможных решений данного уравнения является уединённый солитон:

где  — амплитуда солитона,  — фаза. Эффективная ширина основания солитона равна . Такой солитон движется со скоростью . Видно, что солитоны с большой амплитудой оказываются более узкими и движутся быстрее[15].

В более общем случае можно показать, что существует класс многосолитонных решений, таких что асимптотически при решение распадается на несколько удалённых одиночных солитонов, движущихся с попарно различными скоростями. Общее N-солитонное решение можно записать в виде

где матрица даётся выражением

Здесь и  — произвольные вещественные постоянные.

Замечательным свойством многосолитонных решений является безотражательность: при исследовании соответствующего одномерного уравнения Шрёдингера

с потенциалом , убывающим на бесконечности быстрее чем , коэффициент отражения равен 0 тогда и только тогда, когда потенциал есть некоторое многосолитонное решение уравнения КдФ в некоторый момент времени .

Интерпретация солитонов как некоторых упруго взаимодействующих квазичастиц основана на следующем свойстве решений уравнения КдФ. Пусть при решение имеет асимптотический вид солитонов, тогда при оно также имеет вид солитонов с теми же самыми скоростями, но другими фазами, причём многочастичные эффекты взаимодействия полностью отсутствуют. Это означает, что полный сдвиг фазы -го солитона равен

Пусть -й солитон движется быстрее, чем -й, тогда

то есть фаза более быстрого солитона при парном столкновении увеличивается на величину , а фаза более медленного — уменьшается на , причём полный сдвиг фазы солитона после взаимодействия равен сумме сдвигов фаз от попарного взаимодействия с каждым другим солитоном.

Нелинейное уравнение Шрёдингера

Для нелинейного уравнения Шрёдингера:

при значении параметра допустимы уединённые волны в виде:

где  — некоторые постоянные, связанные соотношениями:


Дромион — решение уравнения Дэви-Стюартсона[16].

См. также

Примечания

  1. J.S.Russell «Report on Waves»: (Report of the fourteenth meeting of the British Association for the Advancement of Science, York, September 1844 (London 1845), pp 311—390, Plates XLVII-LVII)
  2. J.S.Russell (1838), Report of the committee on waves, Report of the 7th Meeting of British Association for the Advancement of Science, John Murray, London, pp.417-496.
  3. Абловиц М., Сигур Х. Солитоны и метод обратной задачи. М.: Мир, 1987, с.12.
  4. N.J.Zabusky and M.D.Kruskal (1965), Interaction of solitons in a collisionless plasma and the recurrence of initial states, Phys.Rev.Lett., 15 pp. 240—243.Оригинал статьи
  5. Дж. Л. Лэм. Введение в теорию солитонов. М.: Мир, 1983. — 294 с.
  6. А. Т. Филиппов. Многоликий солитон. — С. 40—42.
  7. А. Т. Филиппов. Многоликий солитон. — С. 227—23.
  8. Солитон — статья из Физической энциклопедии
  9. Vladimir Belinski, Enric Verdaguer. Gravitational solitons. Cambridge University Press, 2001. — 258 с. — (Cambridge monographs on mathematical physics). ISBN 0521805864.
  10. Н. Н. Розанов. Мир лазерных солитонов // Природа. — 2007. № 6.
  11. А. Т. Филиппов. Многоликий солитон. — С. 241—246.
  12. А. И. Маймистов. Солитоны в нелинейной оптике // Квантовая электроника. — 2010. Т. 40, № 9. С. 756—781.
  13. Andrei I Maimistov. Solitons in nonlinear optics (англ.) // Quantum Electronics. — 2010. — Vol. 40. — P. 756. DOI:10.1070/QE2010v040n09ABEH014396.
  14. В стране и мире - Телеканал «Звезда» (недоступная ссылка). Проверено 5 апреля 2015. Архивировано 4 марта 2016 года.
  15. Сазонов С. В. Оптические солитоны в средах из двухуровневых атомов // Научно-технический вестник информационных технологий, механики и оптики. 2013. Т. 5. № 87. С. 1—22.

Литература

  • Абловиц М., Сигур Х. Солитоны и метод обратной задачи. М.: Мир, 1987. — 480 с.
  • Додд Р., Эйлбек Дж., Гиббон Дж., Моррис Х. Солитоны и нелинейные волновые уравнения. М.: Мир, 1988. — 696 с.
  • Захаров В. Е., Манаков С. В., Новиков С. П., Питаевский Л. П. Теория солитонов: Метод обратной задачи. М.: Наука, 1980. — 320 с.
  • Инфельд Э., Роуландс Дж. Нелинейные волны, солитоны и хаос. М.: Физматлит, 2006. — 480 с.
  • Лэм Дж. Л. Введение в теорию солитонов. М.: Мир, 1983. — 294 с.
  • Ньюэлл А. Солитоны в математике и физике. М.: Мир, 1989. — 328 с.
  • Ахмедиев Н. Н., Анкевич А. Солитоны. Нелинейные импульсы и пучки. М.: Физматлит, 2003. — 304 с. ISBN 5-9221-0344-X.
  • Самарский А. А., Попов Ю. П. Разностные методы решения задач газовой динамики. М.: URSS, 2004. — 424 с.
  • Уизем Дж. Линейные и нелинейные волны. М.: Мир, 1977. — 624 с.
  • Филиппов А. Т. Многоликий солитон // Библиотечка «Квант». — Изд. 2, перераб. и доп.. М.: Наука, 1990. — 288 с.
  • Барьяхтар В. Г., Захаров В. Е., Черноусенко В. М. Интегрируемость и кинетические уравнения для солитонов. — Киев: Наукова думка, 1990. — 472 с. 1000 экз. ISBN 5-12-001120-9.
  • Yaroslav V. Kartashov, Boris A. Malomed, Lluis Torner. Solitons in nonlinear lattices (англ.) // Reviews of Modern Physics. — 2011. — Vol. 83. — P. 247–306.
  • Focus: Landmarks—Computer Simulations Led to Discovery of Solitons (англ.) // Physics. — 2013. — Vol. 6. — P. 15. DOI:10.1103/Physics.6.15.

Ссылки

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2024
WikiSort.ru - проект по пересортировке и дополнению контента Википедии