WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте
Скорость звука в различных средах[1]
0 °C, 101325 Пам/скм/ч
Азот3341202,4
Аммиак4151494,0
Ацетилен3271177,2
Водород12844622,4
Воздух3311191,6
Гелий9653474,0
Железо595021420,0
Золото324011664,0
Кислород3161137,6
Литий600021600,0
Метан4301548,0
Угарный газ3381216,8
Неон4351566,0
Ртуть13834978,0
Стекло480017280,0
Углекислый газ259932,4
Хлор206741,6

Скорость звука — скорость распространения упругих волн в среде: как продольных (в газах, жидкостях или твёрдых телах), так и поперечных, сдвиговых (в твёрдых телах). Определяется упругостью и плотностью среды: как правило, в газах скорость звука меньше, чем в жидкостях, а в жидкостях — меньше, чем в твёрдых телах. Также, в газах скорость звука зависит от температуры данного вещества, в монокристаллах — от направления распространения волны. Обычно не зависит от частоты волны и её амплитуды; в тех случаях, когда скорость звука зависит от частоты, говорят о дисперсии звука.

История измерения скорости звука

Уже у античных авторов встречается указание на то, что звук обусловлен колебательным движением тела (Птолемей, Евклид). Аристотель отмечает, что скорость звука имеет конечную величину, и правильно представляет себе природу звука[2]. Попытки экспериментального определения скорости звука относятся к первой половине XVII в. Ф. Бэкон в «Новом органоне» указал на возможность определения скорости звука путём сравнения промежутков времени между вспышкой света и звуком выстрела. Применив этот метод, различные исследователи (М. Мерсенн, П. Гассенди, У. Дерхам, группа учёных Парижской академии наук — Д. Кассини, Ж. Пикар, Гюйгенс, Рёмер) определили значение скорости звука (в зависимости от условий экспериментов, 350—390 м/с). Теоретически вопрос о скорости звука впервые рассмотрел И. Ньютон в своих «Началах». Ньютон фактически предполагал изотермичность распространения звука, поэтому получил заниженную оценку. Правильное теоретическое значение скорости звука было получено Лапласом[3][4][5][6].

Расчёт скорости звука в жидкости и газе

Скорость звука в однородной жидкости (или газе) вычисляется по формуле:

В частных производных:

где  — адиабатическая упругость среды;  — плотность;  — изобарная теплоёмкость;  — изохорная теплоёмкость; , ,  — давление, удельный объём и температура,  — энтропия среды.

Для газов эта формула выглядит так:

где  — показатель адиабаты: 5/3 для одноатомных газов, 7/5 для двухатомных (и для воздуха), 4/3 для многоатомных;  — постоянная Больцмана;  — универсальная газовая постоянная;  — абсолютная температура в кельвинах;  — температура в градусах Цельсия;  — молекулярная масса;  — молярная масса (кг/моль), .

По порядку величины скорость звука в газах близка к средней скорости теплового движения молекул (см. Распределение Максвелла) и в приближении постоянства показателя адиабаты пропорциональна квадратному корню из абсолютной температуры.

Данные выражения являются приближенными, поскольку основываются на уравнениях, описывающих поведение идеального газа. При больших давлениях и температурах необходимо вносить соответствующие поправки.

Для расчета сжимаемости многокомпонентной смеси, состоящей из невзаимодействующих друг с другом жидкостей и/или газов, применяется уравнение Вуда. Это же уравнение применимо и для оценки скорости звука в нейтральных взвесях.

Для растворов и других сложных физико-химических систем (например, природный газ, нефть) данные выражения могут давать очень большую погрешность.

Твёрдые тела

В однородных твёрдых телах могут существовать два типа объемных волн, отличающихся друг от друга поляризацией колебаний относительно направления распространения волны: продольная (P-волна) и поперечная (S-волна). Скорость распространения первой всегда выше, чем скорость второй :

где  — модуль всестороннего сжатия,  — модуль сдвига,  — модуль Юнга,  — коэффициент Пуассона. Как и для случая с жидкой или газообразной средой, при расчетах должны использоваться адиабатические модули упругости.

В многофазных средах из-за явлений неупругого поглощения энергии скорость звука, вообще говоря, зависит от частоты колебаний (то есть наблюдается дисперсия скорости). Например, оценка скорости упругих волн в двухфазной пористой среде может быть выполнена с применением уравнений теории Био-Николаевского. При достаточно высоких частотах (выше частоты Био) в такой среде возникают не только продольные и поперечные волны, но также и продольная волна II-рода. При частоте колебаний ниже частоты Био, скорость упругих волн может быть приблизительно оценена с использованием гораздо более простых уравнений Гассмана.

При наличии границ раздела, упругая энергия может передаваться посредством поверхностных волн различных типов, скорость которых отличается от скорости продольных и поперечных волн. Энергия этих колебаний может во много раз превосходить энергию объемных волн.

Скорость звука в воде

В чистой воде скорость звука составляет около 1500 м/с (см. опыт Колладона—Штурма) и увеличивается с ростом температуры. Прикладное значение имеет также скорость звука в солёной воде океана. Скорость звука увеличивается в более солёной и более тёплой воде. При большем давлении скорость также возрастает, то есть чем глубже, тем скорость звука больше. Разработано несколько эмпирических формул для вычисления скорости распространения звука в воде.

Например, формула Вильсона 1960 года для нулевой глубины даёт следующее значение скорости звука:

где  — скорость звука в метрах в секунду,  — температура в градусах Цельсия,  — солёность в промилле.

Иногда также пользуются упрощённой формулой Лероя:

где  — глубина в метрах. Эта формула обеспечивает точность порядка 0,1 м/с для  °C и  м.

При температуре +24 °C, солёности 35 промилле и нулевой глубине скорость звука равна около 1532,3 м/c. При  °C, глубине 100 м и той же солёности скорость звука равна 1468,5 м/с[7].

См. также

Скорость звука

Примечания

  1. Скорость звука // под. ред. А. М. Прохорова Физическая энциклопедия. М.: Советская энциклопедия, 1988. Т. 4.
  2. Тимкин С. История естествознания
  3. The Speed of Sound. mathpages.com. Проверено 3 мая 2015.
  4. The Newton–Laplace Equation and Speed of Sound. Thermal Jackets. Проверено 3 мая 2015.
  5. Murdin, Paul. Full Meridian of Glory: Perilous Adventures in the Competition to Measure the Earth. — Springer Science & Business Media, Dec 25, 2008. — P. 35–36. ISBN 9780387755342.
  6. Fox, Tony. Essex Journal. — Essex Arch & Hist Soc, 2003. — P. 12–16.
  7. Роберт Дж. Урик (Rodert J. Urick) Основы гидроакустики (Principles of underwater sound) Л: Судостроение, 1978 (McGraw-Hill 1975)

Литература

  • Ландау Л. Д., Лифшиц Е. М., Механика сплошных сред, 2 изд., М., 1953;
  • Михайлов И. Г., Соловьев В. А., Сырников Ю. П., Основы молекулярной акустики, М., 1964;
  • Колесников А. Е., Ультразвуковые измерения, М., 1970;
  • Исакович М. А., Общая акустика, М., 1973.

Ссылки

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2024
WikiSort.ru - проект по пересортировке и дополнению контента Википедии