Рациональная поверхность — это поверхность, бирационально эквивалентная проективной плоскости, или, другими словами, рациональное многообразие[en] размерности два. Рациональные поверхности являются простейшими из примерно 10 классов поверхностей классицикации Энрикеса — Кодаиры[en] комплексных поверхностей, и это были первые исследованные поверхности.
Любую неособую рациональную поверхность можно получить путём неоднократного раздутия[en] минимальной рациональной поверхности. Минимальными рациональными поверхностями являются проективная плоскость и поверхности Хирцебруха[en] Σr для r = 0 или r ≥ 2.
Инварианты: Все плюрироды[en] равны 0 и фундаментальная группа тривиальна.
1 0 0 1 1+n 1, 0 0 1
где n равен 0 для проективной плоскости, 1 для поверхностей Хирцебруха[en] и больше 1 для других рациональных поверхностей.
Группа Пикара[en] является нечётной унимодулярной решёткой I1,n, за исключением поверхностей Хирцебруха[en] Σ2m, для которых это чётная унимодулярная решётка II1,1.
Гвидо Кастельнуово доказал, что любая комплексная поверхность, для которой q и P2 (иррегулярность и второй плюрирод) равны нулю, является рациональной. Это используется в классификации Энрикеса — Кодаиры для распознавания рациональных поверхностей. Зарисский[1] доказал, что теорема Кастельнуово верна также для полей положительной характеристики.
Из теоремы Кастельнуово следует также, что любая унирациональная[en] комплексная поверхность рациональна. Большинство унирациональных комплексных многообразий размерности 3 и выше не являются рациональными. Для характеристики p > 0 Зарисский[1] нашёл пример унирациональных поверхностей (поверхности Зарисского[en]), не являющихся рациональными.
Одно время было неясно, являются комплексные поверхности с нулевыми q и P1 рациональными или нет, но Федериго Энрикес нашёл контрпример (поверхность Энрикеса[en]).
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .