WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте
Функция одной переменной Ф, заданная на структурированной сетке {xk}

Расчетная (вычислительная) сетка - совокупность точек (сеточных узлов), заданных в области определения некоторой функции {xk}={x1, x2 … xK}.

Функция двух переменных Ф, заданная на структурированной сетке

Расчетные сетки используются при численном решении дифференциальных и интегральных уравнений. Качество построения расчетной сетки в значительной степени определяет успех (неудачу) численного решения уравнения.

Классификация и методы построения расчетных сеток

Процедуру построения расчетной сетки можно рассматривать как построение взаимно-однозначного отображения области определения функции (физической области) на некоторую расчетную область, имеющую более простую форму.

Алгебраические методы построения сетки

Алгебраические сетки строятся путём решения алгебраических уравнений. Примером простейшей сетки, заданной на отрезке, может служить множество {xk}={x1, x2 … xK}, где xk=x1+dx*(k-1). Величина dx в этом случае называется шагом расчетной сетки. Основными достоинствами алгебраических методов являются хороший контроль распределения внутренних узлов сетки и высокая эффективность их численной реализации, что особенно важно при построении адаптивных (перестраивающихся в процессе расчета) сеток. Недостаток алгебраических методов заключается в распространении разрывов границ внутрь области. Применение дифференциальных методов, как правило, позволяет получать более гладкие сетки.

Дифференциальные методы построения сетки

Построение сеток методом конформных отображений

Недостаток методов построения расчетных сеток, использующих метод конформных отображений, заключается в том, что они пригодны лишь для построения двумерных сеток.

Сетки, связанные (согласованные) с границей области

Простейший способ построения расчетной сетки заключается в разбиении пространства системой поверхностей, эквидистантных базовым поверхностям стандартных координатных систем, что позволяет существенно упростить запись решаемых дифференциальных уравнений. Недостаток интерференционной концепции заключается в несвязанности сетки с формой границ области – при рассмотрении областей определения функции произвольной формы, ни одна из координатных линий не совпадает с границей, что приводит к снижению качества реализации граничных условий и (или) к чрезвычайному усложнению расчетного алгоритма и, как следствие, к увеличению затрат машинного времени. Такой подход использован, например, в программном комплексе  (недоступная ссылка), разработанном российской фирмой Тесис. За счет использования криволинейных сеточных линий, можно добиться совпадения границ области определения функции (физической области) и сеточных линий, что позволяет упростить запись граничных условий. Однако, вследствие преобразования координат, в уравнении, подлежащем решению, как правило, появляются дополнительные члены.

Структурированные (регулярные) сетки

Криволинейная структурированная сетка.

В тех случаях, когда множество сеточных узлов является упорядоченным расчетная сетка называется структурированной. Использование структурированных сеток (по сравнению с неструктурированными) позволяет, как правило, уменьшить продолжительность расчета и необходимый объём оперативной памяти ЭВМ. В то же время, процедура построения криволинейной регулярной сетки, как правило, требует больших затрат труда и ресурсов ЭВМ, по сравнению с процедурой построения нерегулярной сетки.

Регулярная сетка[en]

Неструктурированные (нерегулярные) сетки

Неструктурированная расчетная сетка, используемая в МКЭ

Неструктурированная сетка

Ортогональные и ортогонализованные сетки

Для получения решения дифференциального уравнения, имеющего требуемую точность при минимальных затратах ресурсов ЭВМ, расчетная сетка должна обладать рядом свойств. В частности, как показывает опыт многих исследователей, расчетные ячейки должны обладать малой скошенностью, то есть расчетная сетка должна быть, по возможности, ортогонализованной. Задача построения многомерной ортогонализованной расчетной сетки формулируется как задача о минимизации функционала I=int(wQ dV), где w – весовая функция, Q – мера ортогональности сетки. В качестве меры Q может быть использована сумма скалярных произведений касательных к координатным линиям сетки. Можно показать, что вариационная задача о построении ортогонализованной расчетной сетки сводится к краевой задаче для системы дифференциальных уравнений Пуассона. Как известно, система уравнений Пуассона при заданных граничных условиях описывает распределение тепла в рассматриваемом объёме, что позволяет рассчитывать на получение гладких сеточных линий, даже в тех случаях когда границы физической области имеют изломы. Принцип максимума, справедливый для эллиптических уравнений, гарантирует, что максимальные и минимальные значения расчетных координат будут достигаться на границах области. Поскольку используется система эллиптических уравнений, в качестве граничных условий должны задаваться либо координаты узлов сетки на границах (условие Дирихле) либо наклон координатных линий на границах (условие Неймана).

Многосеточный метод

Адаптивные сетки[en]

В задачах с разрывными решениями (в том числе в задачах сверхзвуковой газодинамики) расчетная область характеризуется наличием разномасштабных элементов сложной неоднородной структуры. Достаточно большие зоны имеют малые или умеренные градиенты параметров решения. Вместе с тем встречаются сравнительно узкие области, градиенты параметров решения в которых достигают больших величин. Это — ударные волны, контактные разрывы, пограничные слои. Для получения достоверного численного решения задач такого типа необходимо использовать расчетные сетки с малыми пространственными шагами. Вычислительные затраты при этом становятся столь значительными, что из-за ограничений вычислительной техники не всегда удается получить достаточно точное решение задач. В подобных случаях становится желательным применение динамически адаптивных сеток, позволяющих использование малых пространственных шагов сетки, где это необходимо, для соблюдения жестких требований к численным методам, но при этом сохраняя умеренные требования к вычислительной технике. Методы динамически адаптивных сеток являются одним из наиболее эффективных подходов для повышения точности численного решения в расчетных областях с несколькими пространственными масштабами, отражающими неоднородную структуру решения. Основная идея методов динамически адаптивных сеток состоит в уменьшении размеров ячеек в тех зонах расчетной области, в которых возникают большие ошибки решения. Так как в большинстве случаев искомое решение неизвестно и невозможно определить ошибку, представляющую собой разность точного и приближенного решения в некоторой норме, то в качестве меры ошибки решения чаще всего используют градиенты или разности параметров решения. Выделяют два этапа процесса адаптации: работу критерия и собственно адаптационные процедуры.

Процедуры адаптации. В литературе отмечаются следующие основные подходы: полная регенерация сетки; локальное дробление-слияние ячеек; перемещение узлов. Полная регенерация сетки заключается в построении новой сетки с использованием информации, полученной на старой сетке, и переинтерполяцией решения. В методе перемещения узлов предполагается, что общее число расчетной сетки фиксировано. Их перераспределение также осуществляется с целью повышения густоты сетки в областях локализации особенностей решения и разрежения её там, где такие особенности отсутствуют. Метод локального дробления-слияния ячеек расчетной сетки сводится к включению в сетку дополнительных узлов в окрестностях локализации особенностей решения с одновременным удалением лишних узлов в регионах, где решение не содержит особенностей. При двух крайних методах необходимо поддерживать необходимое качество расчетной сетки.

Многоблочные сетки

Another example of a curvilinear grid.

Литература

  • Андерсон Д., Таннехил Дж., Плетчер Р. Вычислительная гидромеханика и теплообмен: В 2-х т.: Пер. с англ. – М.: Мир, 1990.
  • Флетчер К. Вычислительные методы в динамике жидкостей. М. Мир, 1991, в 2-х т.
  • Thompson Joe F., Warsi Z. A., Mastin C. V. Numerical Grid Generation, Foundations and Applications. – Amsterdam: North-Holland, 1985

См. также

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2024
WikiSort.ru - проект по пересортировке и дополнению контента Википедии