Пространство Калаби — Яу (многообразие Калаби — Яу) — компактное комплексное многообразие с кэлеровой метрикой, для которой тензор Риччи обращается в ноль.
Комплексное -мерное пространство Калаби — Яу является -мерным римановым многообразием с риччи-плоской метрикой и дополнительной симплектической структурой.
Названо по именам математиков Эудженио Калаби и Яу Шинтана.
В одномерном случае любое пространство Калаби — Яу представляет собой тор , который рассматривается как эллиптическая кривая.
Все двумерные пространства Калаби — Яу представляют собой торы и так называемые K3-поверхности. Классификация в бо́льших размерностях не завершена, в том числе в важном трёхмерном случае.
В теории струн используются трёхмерные (имеющие вещественную размерность 6) многообразия Калаби — Яу, выступающие как слой компактификации пространства-времени, так что каждой точке четырёхмерного пространства-времени соответствует пространство Калаби — Яу.
Известно более чем 470 миллионов трёхмерных пространств Калаби — Яу[1], которые удовлетворяют требованиям к дополнительным измерениям, вытекающим из теории струн.
Одной из основных проблем теории струн (учитывая современное состояние разработки) является такая выборка из указанного удовлетворительного подмножества трёхмерных пространств Калаби — Яу, которая давала бы наиболее адекватное обоснование количества и состава семейств всех известных частиц. Феномен свободы выбора пространств Калаби — Яу и возникновение в этой связи в теории струн огромного количества ложных вакуумов известен как проблема ландшафта теории струн. При этом, если теоретические разработки в этой области приведут к выделению единственного пространства Калаби — Яу, удовлетворяющего всем требованиям для дополнительных измерений, это станет очень весомым аргументом в пользу истинности теории струн[2].
![]() |
Это заготовка статьи по геометрии. Вы можете помочь проекту, дополнив её. |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .