Полурешётка (англ. semilattice, до 1960-х годов также использовался термин полуструктура) в общей алгебре — полугруппа, бинарная операция в которой коммутативна и идемпотентна.
С точки зрения теоретико-множественного подхода, полурёшетка определяется как частично упорядоченное множество, для каждой пары элементов которого определена точная верхняя грань (верхняя полурешётка) или точная нижняя грань (нижняя полурешётка). Множество, являющееся одновременно верхней и нижней полурешёткой является решёткой.
Полурешётка аксиоматизируется как алгебра, снабжённая бинарной операцией следующими тождествами:
Если алгебры и — полурешётки, и их операции связаны соотношениями (называемым законами поглощения):
то алгебра является решёткой. В таком контексте называют верхней полурешёткой, а — нижней. В верхних полурешётках вводится верхний элемент такой, что для всех элементов , в нижних — нижний элемент такой, что , полурешётки, в которых существуют такие элементы, называют ограниченными.
Для и из в полурешётке можно определить частичный порядок таким образом: тогда и только тогда, когда . Поскольку бинарная операция в полурешётке идемпотентна, коммутативна и ассоциативна, то определённый таким образом порядок является рефлексивным ( ), антисимметричным ( и транзитивным ( )[1].
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .