WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Пифагорова четвёрка — кортеж целых чисел a, b, c и d, таких, что d > 0 и и зачастую обозначается . Геометрически, пифагорова четвёрка определяет прямоугольный параллелепипед с длинами сторон |a|, |b| и |c|, диагональ которого имеет длину d. Пифагоровы четвёрки также называются пифагоровыми блоками[1].

Параметризация примитивных четвёрок

Множество всех примитивных пифагоровых четвёрок, то есть тех, для которых НОД(a,b,c) = 1, имеет параметризацию[2][3][4]

где m, n, p, q — натуральные целые, НОД(m, n, p, q) = 1 и m + n + p + q ≡ 1 (mod 2). Таким образом, все примитивные пифагоровы четвёрки описываются тождеством Лебега

Альтернативная параметризация

Все пифагоровы четвёрки (включая непримитивные и с повторениями) можно получить из двух натуральных чисел a и b следующим образом:

Если и имеют различную чётность, возьмём любой множитель p числа такой, что . Тогда и Заметим, что

Похожий метод существует[5] для чётных с дополнительным ограничением, что должно быть чётным делителем числа Такого метода не существует для случая, когда оба числа a и b нечётны.

Свойства

Наибольшее число, которое всегда делит произведение abcd, равно 12[6]. Четвёрка с минимальным произведением — (1, 2, 2, 3).

Связь с кватернионами и рациональными ортогональными матрицами

Примитивная пифагорова четвёрка , параметризованная с помощью , соответствует первому столбцу матричного представления сопряжения с помощью кватерниона Гурвица суженого до подпространства , натянутого на

где столбцы попарно ортогональны и каждый имеет норму d. Более того, , и, фактически, все 3 × 3 ортогональные матрицы с рациональными коэффициентами появляются таким образом[7].

Пифагоровы четвёрки с малой нормой

(1,2,2,3), (2,3,6,7), (1,4,8,9), (4,4,7,9), (2,6,9,11), (6,6,7,11), (3,4,12,13), (2,5,14,15), (2, 10, 11, 15), (1,12,12,17), (8,9,12,17), (1,6,18,19), (6,6,17,19), (6,10,15,19), (4,5,20,21), (4,8,19,21), (4,13,16,21), (8,11,16,21), (3,6,22,23), (3,14,18,23), (6,13,18,23), (9, 12, 20, 25), (12, 15, 16, 25), (2,7,26,27), (2,10,25,27), (2,14,23,27), (7,14,22,27), (10,10,23,27), (3,16,24,29), (11,12,24,29), (12,16,21,29)

См. также

Примечания

  1. R. A. Beauregard, E. R. Suryanarayan. Pythagorean boxes // Math. Magazine. — 2001. Т. 74. С. 222—227.
  2. R. D. Carmichael. Diophantine Analysis. — New York: John Wiley & Sons, 1915. — Т. 16. — (MATHEMATICAL MONOGRAPHS).
  3. L. E. Dickson, Some relations between the theory of numbers and other branches of mathematics, in Villat (Henri), ed., Conférence générale, Comptes rendus du Congrès international des mathématiciens, Strasbourg, Toulouse, 1921, pp. 41—56; reprint Nendeln/Liechtenstein: Kraus Reprint Limited, 1967; Collected Works 2, pp. 579—594.
  4. R. Spira. The diophantine equation  // Amer. Math. Monthly. — 1962. Т. 69. С. 360—365.
  5. В. Серпинский. Пифагоровы треугольники. М.: Учпедгиз, 1959. — С. 68.
  6. Des MacHale, Christian van den Bosch. Generalising a result about Pythagorean triples // Mathematical Gazette. — March 2012. Т. 96. С. 91—96.
  7. J. Cremona. Letter to the Editor // Amer. Math. Monthly. — 1987. Т. 94. С. 757—758.

Ссылки

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии