WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Ортонорми́рованная система — ортогональная система, у которой каждый элемент системы имеет единичную норму.

Определение

Для любых элементов этой системы скалярное произведение , где  — символ Кронекера:

Ортонормированная система в случае её полноты может быть использована в качестве базиса пространства. При этом разложение любого элемента может быть вычислено по формулам: , где .

Примеры

  • В конечномерном пространстве ортонормированной системой будет набор векторов:
.
.

Более того, эта система функций также будет ортонормированным базисом в пространстве .

Ортогонализация

По любой линейно независимой системе можно построить ортонормированную систему, применив процесс ортогонализации Грамма-Шмидта.

См. также

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии