WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Теорема Брунна — Минковского — классическая теорема выпуклой геометрии:

Формулировка

Пусть и  — компактные выпуклые тела в n-мерном евклидовом пространстве. Рассмотрим сумму Минковского , , то есть множество точек, делящих отрезки с концами в любых точках множеств и в отношении к . Тогда функция

есть вогнутая функция от .

Более того, функция линейна в том и только в том случае, когда и гомотетичны.

Замечания

  • Неравенство легко выводится из своего частного случая
для любых компактных выпуклых тел и — в n-мерном пространстве.

Следствия

История

Теорема установлена Брунном (англ.) в 1887, уточнена и дополнена Минковским[1], обобщена на случай произвольных компактных тел Люстерником[2].

Довольно простое доказательство приведённое Бляшке использует симметризацию Штайнера. Другое, короткое и простое доказательство нашли Г. Хадвигер и Д. Оман.[3] В нём неравенство доказывается сначала для пар параллелепипедов с параллельными гранями — эта часть эквивалентна неравенству между средним геометрическим и средним арифметическим. Далее по индукции доказывается для конечных объединений таких параллелепипедов. Неравенство следует поскольку любое тело можно приблизить таким объединиением.

Литература

  1. Minkowski, Hermann. Geometrie der Zahlen. — Leipzig : Teubner, 1896.
  2. Lyusternik, Lazar A. (1935). “Die Brunn-Minkowskische Ungleichnung für beliebige messbare Mengen”. Comptes Rendus (Doklady) de l'académie des Sciences de l'uRSS (Nouvelle Série). III: 55—58.
  3. H. Hadwiger and D. Ohmann, Brunn-Minkowskischer Satz und Isoperimetrie, Math. Zeit. 66 (1956), 1–8

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии