WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Мультипликативная группа кольца вычетов по модулю m — мультипликативная группа обратимых элементов кольца вычетов по модулю m. При этом в качестве множества элементов может рассматриваться любая приведенная система вычетов по модулю m.

Приведённая система вычетов

Приведённая система вычетов по модулю m — множество всех чисел полной системы вычетов по модулю m, взаимно простых с m. В качестве приведённой системы вычетов по модулю m обычно берутся взаимно простые с m числа от 1 до m — 1[1].

Пример: приведенной системой вычетов по модулю 42 будет: { 1, 5, 11, 13, 17, 19, 23, 25, 29, 31, 37, 41 }.

Свойства
  • Набор любых φ(m) (φ(m) — функция Эйлера) чисел, взаимно простых с m и несравнимых попарно по модулю m, образуют приведённую систему вычетов[1].
  • Если НОД(a,m) = 1, то множество значений ax, где x пробегает приведенную систему вычетов по модулю m, также является приведенной системой вычетов по модулю m[2].
  • Если НОД(k,m) = 1, то множество значений kx + my, где x пробегает приведенную систему вычетов по модулю m и y пробегает приведенную систему вычетов по модулю k, является приведенной системой вычетов по модулю km[3].
  • В случае, когда число m простое, приведенная система вычетов по модулю m отличается от полной системы вычетов отсутствием нуля[4].
  • Если a — элемент приведенной системы вычетов по модулю m, то, для любого b сравнение разрешимо относительно x[4].

Приведённая система вычетов с умножением по модулю m образует группу, называемую мультипликативной группой или группой обратимых элементов кольца вычетов по модулю m, которая обозначается или [4].

Если m простое, то, как отмечалось выше, элементы 1, 2, …,m-1 входят в . В этом случае является полем[4].

Формы записи

Кольцо вычетов по модулю n обозначают или . Его мультипликативную группу, как и в общем случае групп обратимых элементов колец, обозначают .

Простейший случай

Чтобы понять структуру группы , можно рассмотреть частный случай , где  — простое число, и обобщить его. Рассмотрим простейший случай, когда , то есть .

Теорема:  — циклическая группа. [5]

Пример: Рассмотрим группу

= {1,2,4,5,7,8}
Генератором группы является число 2.
Как видим, любой элемент группы может быть представлен в виде , где . То есть группа  — циклическая.

Общий случай

Для рассмотрения общего случая необходимо определение примитивного корня. Примитивный корень по простому модулю  — это число, которое вместе со своим классом вычетов порождает группу .[5]

Примеры: 2 — примитивный корень по модулю 11; 8 — примитивный корень по модулю 11; 3 не является примитивным корнем по модулю 11.

В случае целого модуля определение такое же.

Структуру группы определяет следующая теорема: Если p — нечётное простое число и l — целое положительное, то существуют примитивные корни по модулю , то есть  — циклическая группа.

Из китайской теоремы об остатках следует, что при имеет место изоморфизм .

Группа  — циклическая. Её порядок равен .

Группа  — также циклическая порядка a при a=1 или a=2. При эта группа циклической не является и представляет собой прямое произведение двух циклических групп, порядков и .

Группа циклична тогда и только тогда, когда или или n = 2 или n = 4, где p — нечётное простое число. В общем случае как абелева группа представляется прямым произведением циклических примарных групп, изоморфных .[5]

Подгруппа свидетелей простоты

Пусть  — нечётное число большее 1. Число однозначно представляется в виде , где нечётно. Целое число , , называется свидетелем простоты числа , если выполняется одно из условий:

или

  • существует целое число , , такое, что

Если число  — составное, существует подгруппа мультипликативной группы кольца вычетов, называемая подгруппой свидетелей простоты. Её элементы, возведённые в степень , совпадают с по модулю .

Пример: . Есть остатков, взаимно простых с , это и . эквивалентно по модулю , значит эквивалентно по модулю . Значит, и  — свидетели простоты числа . В данном случае {1, 8} — подгруппа свидетелей простоты.[6]

Свойства

Экспонента группы

Экспонента группы равна функции Кармайкла .

Порядок группы

Порядок группы равен функции Эйлера: . Отсюда и из изоморфизма можно получить ещё один способ доказательства равенства при [5]

Порождающее множество

 — циклическая группа тогда и только тогда, когда В случае циклической группы генератор называется первообразным корнем.

Пример

Приведённая система вычетов по модулю состоит из классов вычетов: . Относительно определённого для классов вычетов умножения они образуют группу, причём и взаимно обратны (то есть ), а и обратны сами себе.

Структура группы

Запись означает «циклическая группа порядка n».

Структура группы (Z/nZ)×
Генератор группы   Генератор группы   Генератор группы   Генератор группы
1 C1110 33 C2×C1020102, 10 65 C4×C1248122, 12 97 C9696965
2 C1111 34 C1616163 66 C2×C1020105, 7 98 C4242423
3 C2222 35 C2×C1224122, 6 67 C6666662 99 C2×C3060302, 5
4 C2223 36 C2×C61265, 19 68 C2×C1632163, 67 100 C2×C2040203, 99
5 C4442 37 C3636362 69 C2×C2244222, 68 101 C1001001002
6 C2225 38 C1818183 70 C2×C1224123, 69 102 C2×C1632165, 101
7 C6663 39 C2×C1224122, 38 71 C7070707 103 C1021021025
8 C2×C2423, 5 40 C2×C2×C41643, 11, 39 72 C2×C2×C62465, 17, 19 104 C2×C2×C1248123, 5, 103
9 C6662 41 C4040406 73 C7272725 105 C2×C2×C1248122, 29, 41
10 C4443 42 C2×C61265, 13 74 C3636365 106 C5252523
11 C1010102 43 C4242423 75 C2×C2040202, 74 107 C1061061062
12 C2×C2425, 7 44 C2×C1020103, 43 76 C2×C1836183, 37 108 C2×C1836185, 107
13 C1212122 45 C2×C1224122, 44 77 C2×C3060302, 76 109 C1081081086
14 C6663 46 C2222225 78 C2×C1224125, 7 110 C2×C2040203, 109
15 C2×C4842, 14 47 C4646465 79 C7878783 111 C2×C3672362, 110
16 C2×C4843, 15 48 C2×C2×C41645, 7, 47 80 C2×C4×C43243, 7, 79 112 C2×C2×C1248123, 5, 111
17 C1616163 49 C4242423 81 C5454542 113 C1121121123
18 C6665 50 C2020203 82 C4040407 114 C2×C1836185, 37
19 C1818182 51 C2×C1632165, 50 83 C8282822 115 C2×C4488442, 114
20 C2×C4843, 19 52 C2×C1224127, 51 84 C2×C2×C62465, 11, 13 116 C2×C2856283, 115
21 C2×C61262, 20 53 C5252522 85 C4×C1664162, 3 117 C6×C1272122, 17
22 C1010107 54 C1818185 86 C4242423 118 C58585811
23 C2222225 55 C2×C2040202, 21 87 C2×C2856282, 86 119 C2×C4896483, 118
24 C2×C2×C2825, 7, 13 56 C2×C2×C62463, 13, 29 88 C2×C2×C1040103, 5, 7 120 C2×C2×C2×C43247, 11, 19, 29
25 C2020202 57 C2×C1836182, 20 89 C8888883 121 C1101101102
26 C1212127 58 C2828283 90 C2×C1224127, 11 122 C6060607
27 C1818182 59 C5858582 91 C6×C1272122, 3 123 C2×C4080407, 83
28 C2×C61263, 13 60 C2×C2×C41647, 11, 19 92 C2×C2244223, 91 124 C2×C3060303, 61
29 C2828282 61 C6060602 93 C2×C30603011, 61 125 C1001001002
30 C2×C4847, 11 62 C3030303 94 C4646465 126 C6×C63665, 13
31 C3030303 63 C6×C63662, 5 95 C2×C3672362, 94 127 C1261261263
32 C2×C81683, 31 64 C2×C1632163, 63 96 C2×C2×C83285, 17, 31 128 C2×C3264323, 127

Применение

На сложности дискретного логарифмирования в мультипликативной группе кольца вычетов основана криптографическая стойкость шифрсистемы Эль-Гамаля.[7]

История

Вклад в исследование структуры мультипликативной группы кольца вычетов внесли Артин, Билхарц, Брауэр, Вильсон, Гаусс, Лагранж, Лемер, Уоринг, Ферма, Хули, Эйлер. Лагранж доказал лемму о том, что если , и k — поле, то f имеет не более n различных корней, где n — степень f. Он же доказал важное следствие этой леммы, заключающееся в сравнении . Эйлер доказал малую теорему Ферма. Уоринг сформулировал теорему Вильсона, а Лагранж её доказал. Эйлер предположил существование примитивных корней по модулю простого числа. Гаусс это доказал. Артин выдвинул свою гипотезу о существовании и количественной оценке простых чисел, по модулю которых заданное целое число является первообразным корнем. Брауэр внес вклад в исследование проблемы существования наборов последовательных целых чисел, каждое из которых — k-ая степень по модулю p. Билхарц доказал аналог гипотезы Артина. Хули доказал гипотезу Артина с предположением справедливости расширенной гипотезы Римана в полях алгебраических чисел.[5]

Примечания

  1. 1 2 И. М. Виноградов Основы теории чисел. изд. 9-е, перераб., М. : Наука. 1981
  2. Сагалович Ю. Л. Введение в алгебраические коды. 2011.
  3. Бухштаб, 1966.
  4. 1 2 3 4 В. Босс Лекции по математике. Том 14. Теория чисел. 2014.
  5. 1 2 3 4 5 Айерлэнд, Роузен, 1987.
  6. Erdős, Paul; Pomerance, Carl (1986). “On the number of false witnesses for a composite number”. Math. Comput. 46: 259—279. Zbl 0586.10003. Параметры |author1-link= и |author-link= дублируют друг друга (справка)
  7. Алферов и др., 2002.

Литература

  • Айерлэнд К., Роузен М. Классическое введение в современную теорию чисел. М.: Мир, 1987.
  • Алферов А.П., Зубов А.Ю., Кузьмин А.С. Черемушкин А.В. Основы криптографии. — Москва: «Гелиос АРВ», 2002.
  • Ростовцев А.Г., Маховенко Е.Б. Теоретическая криптография. — Санкт-Петербург: НПО «Профессионал», 2004.

Ссылки

  • Бухштаб А. А. Теория чисел. М.: Просвещение, 1966.
  • Weisstein, Eric W. Modulo Multiplication Group (англ.) на сайте Wolfram MathWorld.

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2024
WikiSort.ru - проект по пересортировке и дополнению контента Википедии