Модальная логика (от лат. modus — способ, мера) — логика, в которой кроме стандартных логических связок, переменных и/или предикатов есть модальности (модальные операторы).
Формальную логику можно упростить до цепочки истинное знание→процесс→выводы.
Откуда брать истинное знание для формальных логик если только единичные истинные знания универсальны?..
Логика должна отвечать на реальные жизненные ситуации, а универсальных истин немного.
Модальная логика в широком смысле оперирует:
То есть является более реальным/практичным расширением логики высказываний и логики первого порядка.
Например, модальная логика способна оперировать утверждениями типа «Москва всегда была столицей России» или «Санкт-Петербург, когда-то в прошлом, был столицей России», которые невозможно или крайне сложно выразить в немодальном языке. Кроме временных и пространственных модальностей есть и другие, например «известно, что» (логика знания) или «можно доказать, что» (логика доказуемости).
Обычно для обозначения модального оператора используется и двойственный к нему :
Это отражает то, что сказать «Москва когда-то была столицей России» то же самое, что сказать «не верно, что Москва никогда не была столицей России».
Модальности бывают разные; наиболее распространены временны́е («когда-нибудь в будущем», «всегда в прошлом», «всегда» и т. д.) и пространственные («здесь», «где-то», «близко» и т. д.).
Аксиологическую логику разработал философ А. А. Ивин.
Оперирует понятиями «знает» «полагает».
Оперирует понятиями: обязательство, разрешение, норма.
«Ты обязан это сделать» («Твой долг это сделать») либо «Ты можешь это сделать»
Эти понятия пытались внедрить достаточно давно, но значительный результат был только у Георга фон Вригта в Deontic Logic, Mind, New Series, Vol. 60, No. 237. (Jan., 1951), pp. 1-15.[1]
Статья 2007 года о реализации деонтической логики. A Formal Language for Electronic Contracts[2] использующий µ-calculus и реализацию mu-cke от A. Biere[3]
В математической логике и информатике наиболее распространённой является семантика Крипке, также существуют алгебраическая семантика, топологическая семантика и ряд других.
Модальная формула определяется рекурсивно как слово в алфавите состоящем из счетного множества пропозициональных переменных , классических связок , скобок , и модального оператора . А именно, формулой является
Нормальной модальной логикой называется множество модальных формул, содержащее все классические тавтологии, аксиому нормальности
и замкнутое относительно правил Modus ponens , подстановки и введение модальности .
Минимальная нормальная модальная логика обозначается .
![]() |
Это заготовка статьи по математике. Вы можете помочь проекту, дополнив её. |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .