WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Многогранник Биркгофа Bn, который также называется многогранником назначений, многогранником дважды стохастических матриц или многогранником совершенных паросочетаний полного двудольного графа  [1], это выпуклый многогранник в RN (где ), точками которого являются дважды стохастические матрицы, то есть n × n матрицы, элементами которых служат неотрицательные вещественные числа и сумма строк и столбцов этих матриц равна 1.

Свойства

Вершины

Многогранник Биркгофа имеет n! вершин, по одной вершине на каждую перестановку n элементов[1]. Это следует из теоремы Биркгофа — Фон Неймана, которая утверждает, что экстремальные точки[en] многогранника Биркгофа — это матрицы перестановок, и потому, что любая дважды стохастическая матрица может быть представлена в виде выпуклой комбинации матриц перестановок. Это доказал в 1946 году в своей статье Гаррет Биркгоф[2], но эквивалентные результаты в терминах конфигураций и паросочетаний регулярных двудольных графов показали много ранее в 1894 году Эрнст Штайниц в своих тезисах и в 1916 году Денеш Кёниг[3].

Рёбра

Рёбра многогранника Биркгофа соответствуют парам перестановок, различающихся циклом:

перестановка такая, что является циклом.

Из этого следует, что граф многогранника Bn является графом Кэли симметрической группы Sn. Отсюда также следует, что граф B3 является полным графом K6, а тогда B3 — смежностный многогранник.

Фасеты

Многогранник Биркгофа лежит внутри (n2 2n + 1)-мерного аффинного подпространства n2-мерного пространства всех n × n матриц — это подпространство задаётся линейными ограничениями, что сумма по каждой строке и каждому столбцу равна единице. Внутри этого подпространства накладывается n2 линейных неравенств, по одному на каждую координату, требующих неотрицательности координат.

Таким образом, многогранник имеет в точности n2 фасет[1].

Симметрии

Многогранник Биркгофа Bn вершинно транзитивен и гранетранзитивен (то есть двойственный многогранник вершинно транзитивен). Многогранник не входит в число правильных для n>2.

Объём

Нерешённой задачей является нахождение объёма многогранников Биркгофа. Объём найден для [4]. Известно, что объём равен объёму многогранника, ассоциированного со стандартной диаграммой Юнга[5]. Комбинаторная формула для всех n дана в 2007[6]. Следующую асимптотическую формулу[en] нашли Родни Кэнфилд[en] и Брендан МакКэй[en][7]:

Многочлен Эрхарта

Нахождение многочлена Эрхарта многогранника сложнее, чем нахождение объёма, поскольку объём можно легко вычислить из ведущего коэффициента многочлена Эрхарта. Многочлен Эрхарта, ассоциированный с многогранником Биркгофа, известен только для малых значений и только имеется гипотеза, что все коэффициенты многочленов Эрхарта (для многогранников Биркгофа) неотрицательны.

Обобщения

См. также

Примечания

Литература

  • Günter M. Ziegler. Lectures on Polytopes. — 7th. — New York: Springer, 2007. — Т. 152. — (Graduate Texts in Mathematics). ISBN 978-0-387-94365-7.
  • Garrett Birkhoff. Tres observaciones sobre el algebra lineal [Three observations on linear algebra] // Univ. Nac. Tucumán. Revista A.. — 1946. Т. 5. С. 147–151.
  • Dénes Kőnig. Gráfok és alkalmazásuk a determinánsok és a halmazok elméletére // Matematikai és Természettudományi Értesítő. — 1916. Т. 34.
  • Igor Pak. Four questions on Birkhoff polytope // Annals of Combinatorics. — 2000. Т. 4. DOI:10.1007/PL00001277.
  • Jesus A. De Loera, Fu Liu, Ruriko Yoshida. Formulas for the volumes of the polytope of doubly-stochastic matrices and its faces // Journal of Algebraic Combinatorics. — 2007. Т. 30. DOI:10.1007/s10801-008-0155-y. arXiv:math.CO/0701866.
  • Rodney E. Canfield, Brendan D. McKay. The asymptotic volume of the Birkhoff polytope. — 2007.

Литература для дальнейшего чтения

Ссылки

  • Birkhoff polytope Web site by Dennis Pixton and Matthias Beck, with links to articles and volumes.

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии