В этой статье не хватает ссылок на источники информации. |
Матрица Адамара — это квадратная матрица размера n×n, составленная из чисел 1 и −1, столбцы которой ортогональны, так что справедливо соотношение
где — это единичная матрица размера n. Матрицы Адамара применяются в различных областях, включая комбинаторику, численный анализ, обработку сигналов.
Недоказанная гипотеза Адамара утверждает, что матрица Адамара порядка 4k существует для каждого натурального k.
На множестве матриц Адамара размера действует группа преобразований , порождённая инверсиями строк и столбцов (умножением на −1), а также перестановками строк и столбцов.
Две матрицы Адамара и называются эквивалентными, если существует элемент такой, что . Таким образом, все матрицы Адамара заданного размера разбиваются на классы эквивалентности.
Теорема 1. Существует алгоритм перечисления нормализованных матриц Адамара.
Теорема 2. Для порядков 1, 2, 4, 8, 12, 16, 20, 24 существует соответственно 1, 1, 1, 1, 2, 118, 6520, 43966313 (последовательность A147774 в OEIS) эквивалентных классов нормализованных матриц Адамара по отношению эквивалентности перестановок строк и столбцов.
Определение. Автотопией матрицы Адамара H называется элемент такой, что .
Теорема 3. Существует алгоритм вычисления группы автотопий матрицы Адамара.
Теорема 4. Существует алгоритм проверки эквивалентности двух матриц Адамара, находящий нужный элемент .
Теорема 5. Существуют полиномиально вычислимые функции на матрицах Адамара, инвариантные относительно действия группы , и позволяющие в определённых случаях различать неэквивалентные матрицы Адамара.
Теорема 6. Существует алгоритм, перечисляющий только по одной матрице из каждого эквивалентного класса, для всех матриц заданного размера (в стадии разработки).
![]() |
Это заготовка статьи по математике. Вы можете помочь проекту, дополнив её. |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .