Колеба́ния — повторяющийся в той или иной степени во времени процесс изменения состояний системы около точки равновесия. Например, при колебаниях маятника повторяются отклонения его в ту и другую сторону от вертикального положения; при колебаниях в электрическом колебательном контуре повторяются величина и направление тока, текущего через катушку.
Колебания почти всегда связаны с попеременным превращением энергии одной формы проявления в другую форму. Колебания различной физической природы имеют много общих закономерностей и тесно взаимосвязаны c волнами. Поэтому исследованиями этих закономерностей занимается обобщённая теория колебаний и волн. Принципиальное отличие от волн: при колебаниях не происходит переноса энергии, это, так сказать, «местные» преобразования.
Выделение разных видов колебаний зависит от подчёркиваемых свойств систем с колебательными процессами (осцилляторов).
Так, периодические колебания определены следующим образом:
![]() | Периодическими функциями называются, как известно, такие функции
, для которых можно указать некоторую величину
, так что
| ![]() |
Период колебаний и частота — обратные величины;
В круговых или циклических процессах вместо характеристики «частота» используется понятие круговая (циклическая) частота (рад/с, Гц, с−1), показывающая число колебаний за единиц времени:
Гармонические колебания были известны с XVII века.
Термин «релаксационные колебания» был предложен в 1926 г. ван дер Полем.[A: 2][A: 3] Обосновывалось введение такого термина лишь тем обстоятельством, что указанному исследователю казались все подобные колебания связанными с наличием «времени релаксации» — т. е. с концептом, который на тот исторический момент развития науки представлялся наиболее понятным и широко распространённым. Ключевым свойством колебаний нового типа, описанных рядом перечисленных выше исследователей, было то, что они существенно отличались от линейных, — что проявляло себя в первую очередь как отклонение от известной формулы Томсона. Тщательное историческое исследование показало[A: 4], что ван дер Поль в 1926 г. ещё не осознавал того обстоятельства, что открытое им физическое явление «релаксационные колебания» соответствует введённому Пуанкаре математическому понятию «предельный цикл», и понял он это лишь уже после вышедшей в 1929 г. публикации А. А. Андронова.
Иностранные исследователи признают[A: 4] тот факт, что среди советских учёных мировую известность приобрели ученики Л. И. Мандельштама, выпустившие в 1937 г. первую книгу[B: 1], в которой были обобщены современные сведения о линейных и нелинейных колебаниях. Однако советские учёные «не приняли в употребление термин "релаксационные колебания", предложенный ван дер Полем. Они предпочитали термин "разрывные движения", используемый Блонделем, в частности потому, что предполагалось описывать этих колебаний в терминах медленных и быстрых режимов. Этот подход стал зрелым только в контексте теории сингулярных возмущений»[A: 4].
Важным типом колебаний являются гармонические колебания — колебания, происходящие по закону синуса или косинуса. Как установил в 1822 году Фурье, любое периодическое колебание может быть представлено как сумма гармонических колебаний путём разложения соответствующей функции в ряд Фурье. Среди слагаемых этой суммы существует гармоническое колебание с наименьшей частотой, которая называется основной частотой, а само это колебание — первой гармоникой или основным тоном, частоты же всех остальных слагаемых, гармонических колебаний, кратны основной частоте, и эти колебания называются высшими гармониками или обертонами — первым, вторым и т.д.[B: 2]
Указывается[A: 4], что формулировка, представленная Ван дер Полем: «медленная эволюция, сопровождаемая внезапным прыжком» (в оригинале: “slow evolution followed by a sudden jump”), — недостаточна, чтобы избежать неоднозначной интерпретации, причём на это обстоятельство указывали ещё современники ван дер Поля.
Тем не менее, похожим образом релаксационные колебания определяются и в более поздних работах. Например, Е. Ф. Мищенко и соавт.[2] определяют релаксационные колебания как такие «периодические движения» по замкнутой фазовой траектории, при которых «сравнительно медленные, плавные изменения фазового состояния чередуются с весьма быстрыми, скачкообразными». При этом далее указывается[3], что «сингулярно возмущённую систему, допускающую такое периодическое решение, называют релаксационной».
Рассматривались отдельно в классической коллективной монографии А.А.Андронова и соав.[4] под названием «разрывные колебания», более принятому в советской математической школе.
Позже сложилась в теорию сингулярных возмущений (см. напр.[B: 3] ).
![]() |
Это заготовка статьи по физике. Вы можете помочь проекту, дополнив её. |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .