Мартин Дэвис | |
---|---|
![]() | |
Дата рождения | 1928[1][2][…] |
Место рождения | |
Страна | |
Научная сфера | теория чисел |
Место работы | |
Альма-матер | |
Научный руководитель | Алонзо Чёрч |
Награды и премии | |
![]() |
Мартин Дэвид Дэвис (англ. Martin Davis, род. 1928 год) — американский математик, известный своей работой, которая посвящена десятой проблеме Гильберта[3][4].
Родители Дэвиса иммигрировали в США из города Лодзь (Польша). Встретившись уже в Нью-Йорке, они поженились. Дэвис родился и вырос в городе Бронкс. Родители с детства поощряли Мартина получить высшее образование[3][4].
В 1950 году под руководством Алонзо Черча Мартин получил доктора в Принстонском университете, который является одним из старейших и самых престижных университетов США.
Дэвис — один из изобретателей алгоритма Дэвиса-Путнама[en] и алгоритма DPLL. Также он известен благодаря своей модели машины Поста.
В 30-х годах XX века формализуется понятие алгоритм, а также появляются первые примеры алгоритмически неразрешимых теорий в математической логике. Важным моментом стало доказательство Андреем Марковым и Эмилем Постом (независимо друг от друга) неразрешимость задачи Туе[en][5] в 1947 году. Это было первое доказательство неразрешимости алгебраической задачи. Трудности, с которыми столкнулись исследователи диофантовых уравнений, вызвали предположение, что необходимого Гильбертом алгоритма не существует. Немного ранее, в 1944 году, Эмиль Пост в одной из своих работ уже писал, что десятая проблема «молит о доказательстве неразрешимости» (англ. «Begs for an unsolvability proof»).
Слова Поста вдохновили студента Мартина Дэвиса на поиск доказательств неразрешимости десятой проблемы. Дэвис перешел от ее формулировки в целых числах к более естественной для теории алгоритмов формулировки в натуральных числах. Это две разные задачи, однако каждая из них сводится к другой. В 1953 году он опубликовал работу, в которой наметил путь решения десятой проблемы в натуральных числах.
Дэвис наравне с классическими диофантовыми уравнениями рассмотрел их параметрическую версию:
где многочлен с целыми коэффициентами можно разделить на две части — параметры и переменные При одном наборе значений параметров уравнения может иметь решение, при другом решений может его не иметь. Дэвис выделил множество , которое содержит все наборы значений параметров ( ), при которых уравнение имеет решение:
Такую запись он назвал диофантовым представлением множества, а само множество также назвал диофантовым. Для доказательства неразрешимости десятой проблемы нужно было лишь показать диофантовость любого перечислимое множества, то есть показать возможность построения уравнения, которое имело бы натуральные корни при , принадлежащих к этому множеству: поскольку среди перечислимых множеств содержатся неразрешимые, то, взяв неразрешимое множество за основу, невозможно было бы получить общий метод, который бы определял, имеются ли в этом наборе уравнения натуральные корни. Все это привело Дэвиса к такой гипотезе:
|
Дэвис также сделал первый шаг — доказал, что любое перечислимое множество можно представить в виде:
Это получило название «нормальная форма Дэвиса». Доказать свою гипотезу, избавившись от квантора всеобщности, ему на тот момент не удалось.
В 1975 году, Дэвис был награжден премией Стила, премией «Chauvenet Prize» и премией Лестера Форда за работу, которая посвящена десятой проблеме Гильберта[4].
В 1982 году Мартин стал членом и Американской академии искусств и наук[4].
В 2012 был избран стипендиатом Американского математического общества[6].
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .