Двенадцатое простое число Мерсенна — натуральное число . Являлось самым большим известным простым числом с 1876 по 1951 годы.
Это число является двенадцатым простым числом среди чисел Мерсенна[1]. Это означает, что нет числа, меньшего этого, которое бы имело период 127 в двоичной системе при обращении. Эдуард Люка показал в 1876-ом году, что это число — простое с помощью теста простоты Люка — Лемера. Это число оставалось самым большим известным простым числом в течение 75 лет, до 1951 года, когда было показано, что (2148 + 1)/17 является ещё большим простым числом. Также это число является четвёртым двойным числом Мерсенна и пятым числом Каталана — Мерсенна (наибольшим известным простым в обоих случаях). Проверка простоты следующего числа Каталана — Мерсенна известными методами невозможна, потому что оно состоит из более 51 ундециллиона цифр.
В фильме из серии Футурама — Зверь с миллиардом спин, это число, равное седьмому двойному числу Мерсенна , видно кратко в «элементарном доказательстве гипотезы Гольдбаха», и известно как «martian prime».
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .