WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте
Глюон (g)
Состав элементарная частица
Семья бозон
Группа калибровочный бозон
Участвует во взаимодействиях сильное,
гравитационное
Античастица сам себе (для нейтральных глюонов)
Теоретически обоснована Гелл-Манн, Цвейг (1964)
Обнаружена 1979
Кол-во типов 8
Масса 0 (теоретическое значение)[1]
< 1,3 МэВ/c2 (экспериментальное ограничение)[2][3]
Квантовые числа
Электрический заряд 0[1]
Цветной заряд
Спин 1[4] ħ
Внутренняя чётность
Кол-во спиновых состояний 2
Изотопический спин 0

Глюо́н (от англ. gluon, от glue — клей) — элементарная безмассовая частица, переносчик сильного взаимодействия[5].

Говоря техническим языком, глюоны — это векторные калибровочные бозоны, непосредственно отвечающие за сильное цветовое взаимодействие между кварками в квантовой хромодинамике (КХД)[5]. В отличие от фотонов в квантовой электродинамике (КЭД), которые электрически нейтральны и не взаимодействуют[6] друг с другом, глюоны сами несут цветовой заряд и, таким образом, участвуют в сильных взаимодействиях, а не только переносят их. Это делает КХД значительно более сложной для понимания, чем КЭД.

МезонМезонБарионНуклонКваркЛептонЭлектронАдронАтомМолекулаФотонW- и Z-бозоныГлюонГравитонЭлектромагнитное взаимодействиеСлабое взаимодействиеСильное взаимодействиеГравитацияКвантовая электродинамикаКвантовая хромодинамикаКвантовая гравитацияЭлектрослабое взаимодействиеТеория великого объединенияТеория всегоЭлементарная частицаВеществоБозон Хиггса
Краткий обзор различных семейств элементарных и составных частиц и теории, описывающие их взаимодействия. В поле элементарных частиц слева — фермионы, справа — бозоны (изображение интерактивно)

Свойства

Глюон — это квант векторного (то есть обладающего единичным спином и отрицательной внутренней чётностью) поля в КХД. Он не имеет массы. В квантовой теории поля ненарушенная калибровочная инвариантность требует, чтобы калибровочный бозон был безмассовым[1] (эксперимент ограничивает массу глюона сверху значением не более нескольких МэВ[2]). Все эти свойства (а также нулевой электрический заряд) сближают его с фотоном.

В то время как массивные векторные частицы имеют три состояния поляризации, безмассовые векторные калибровочные бозоны, такие, как глюон и фотон, имеют только две возможных поляризации из-за того, что калибровочная инвариантность требует поперечной поляризации.

Глюон обладает нулевым изоспином. Бесцветные глюоны и являются античастицами самим себе, то есть истинно нейтральными частицами.

Нумерология глюонов

В отличие от единственного фотона в КЭД или трёх W- и Z-бозонов, переносящих слабое взаимодействие, в КХД существует 8 независимых типов глюонов.

Кварки могут нести три типа цветового заряда; антикварки — три типа антицветового. Глюоны могут быть осмыслены как носители одновременно цвета и антицвета, либо как объяснение изменения цвета кварка во время взаимодействий. Исходя из того, что глюоны несут ненулевой цветовой заряд, можно подумать, что существует только шесть глюонов. Но на самом деле их восемь, так как говоря техническим языком, КХД — это калибровочная теория с SU(3)-симметрией. Кварки представлены как поля спиноров в Nf ароматах, каждый в фундаментальном представлении (триплет, обозначается 3) цветовой калибровочной группы, SU(3). Глюоны являются векторными полями в присоединённом представлении (октеты, обозначаются 8) цветовой SU(3)-группы. Вообще говоря, для калибровочной группы число переносчиков взаимодействия (таких как фотоны и глюоны) всегда равно размерности присоединённого представления. Для простого случая SU(N) размерность этого представления равна N2 − 1.

В терминах теории групп утверждение, что синглетные по цвету глюоны отсутствуют, является просто заявлением, что квантовая хромодинамика имеет симметрию SU(3), а не U(3). Априорных причин для предпочтения той или другой группы нет, но эксперимент согласуется лишь с SU(3).

Цветные глюоны:

Бесцветные глюоны:

Третье бесцветное состояние:

не существует. Нумерация глюонов соответствует нумерации матриц Гелл-Манна — генераторов группы SU(3).

Ограничения

Экспериментальные наблюдения

Первое прямое экспериментальное доказательство существования глюонов было получено в 1979 году, когда в экспериментах на электрон-позитронном коллайдере PETRA в исследовательском центре DESY (Гамбург, ФРГ) были обнаружены события с тремя адронными струями, две из которых порождались кварками и третья — глюоном.

Косвенное доказательство существования глюонов было получено на десять лет раньше при количественном анализе процесса глубоко неупругого рассеяния электронов на протоне/нейтроне, проведённом в американской лаборатории SLAC.

В 2005 году на релятивистском коллайдере тяжёлых ионов RHIC была получена кварк-глюонная плазма.

Предсказываемый глюбол (частица, состоящая из одних глюонов; облако глюонов, оторванных от протона при соударении) пока не был ни обнаружен, ни создан искусственно.

Конфайнмент

Свободные кварки до сих пор не наблюдались, несмотря на многолетние попытки их обнаружения. Аналогичная ситуация создалась и с глюонами. Однако в Фермилабе было статистически обнаружено одиночное рождение топ-кварка[7] (его время жизни слишком мало, чтобы образовывать связанные состояния[8]).

На очень малых расстояниях глубоко внутри адронов взаимодействие между глюонами и кварками постепенно спадает в результате проявления асимптотической свободы[9].

Существуют некоторые указания на существование экзотических адронов, имеющих число валентных кварков больше трёх (см. Пентакварк).

См. также

  • Померон — возникает при попытке вытаскивания части глюонного облака из протона[10].

Примечания

  1. 1 2 3 K.A. Olive; et al. (2014). “Review of Particle Physics” (PDF). Chinese Phys. C. 38: 090001. DOI:10.1088/1674-1137/38/9/090001.
  2. 1 2 F. Yndurain (1995). “Limits on the mass of the gluon”. Physics Letters B. 345 (4): 524. Bibcode:1995PhLB..345..524Y. DOI:10.1016/0370-2693(94)01677-5.
  3. Сводная таблица свойств глюона, известных на 2014 год // Particle Data Group  (англ.)
  4. Лев Окунь. Основные понятия и законы физики и свойства элементарных частиц материи. Стандартная модель и за её пределами.
  5. 1 2 А. В. Ефремов. Глюоны // Физическая энциклопедия / Гл. ред. А. М. Прохоров. М.: Советская энциклопедия, 1988.
  6. в первом порядке теории возмущений.
  7. Умные алгоритмы помогли совершить открытие в физике элементарных частиц • Игорь Иванов • Новости науки на «Элементах» • Физика. elementy.ru. Проверено 21 апреля 2017.
  8. t-кварк
  9. Основные понятия и законы физики и свойства элементарных частиц материи • Л. Окунь • Книжный клуб на «Элементах» • Опубликованные отрывки из книг Сильное взаимодействие. Конфайнмент и асимптотическая свобода. elementy.ru. Проверено 21 апреля 2017.
  10. Иванов И. Удивительный мир внутри атомного ядра. Научно-популярная лекция для школьников, ФИАН. elementy.ru (11.09.2007). Проверено 18 июля 2015.

Литература

  • Боголюбов Н.Н., Логунов А.А., Оксак А.И., Тодоров И.Т. Общие принципы квантовой теории поля. — Москва: Наука, 1987. — С. 226, 227. — 616 с.
  • Jean Letessier, Johann Rafelski, T. Ericson, P. Y. Landshoff. Hadrons and Quark-Gluon Plasma. Cambridge University Press, 2002. — 415 p. ISBN 9780511037276.

Ссылки

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2024
WikiSort.ru - проект по пересортировке и дополнению контента Википедии