Альфа-частица | |
Символ: | α, α2+, He2+ |
---|---|
![]() Альфа-частица | |
Ядро изотопа: | Гелий-4 ( ) |
Химический элемент: | Гелий |
Состав: | 2 протона, 2 нейтрона |
Семья: | Бозон |
Магнитный момент: | 0 |
Электрический квадрупольный момент: | 0 |
Массовое число (барионное число): | 4 |
Масса: | 3,727379240(82) ГэВ (около 6,644656⋅10−27 кг) |
Масса, а.е.м.: | 4,001506179125(62) |
Энергия связи: | 28,11 МэВ (7,03 МэВ на нуклон)[1] |
Время жизни: | Стабильна |
Чётность: | + |
Электрический заряд: | 2 |
Спин: | 0 |
Изотопический спин: | 0 |
Гиперзаряд: | 4 |
А́льфа-части́ца (α-частица) — положительно заряженная частица, образованная двумя протонами и двумя нейтронами; ядро атома гелия-4 ( ). Альфа-частицы могут вызывать ядерные реакции; в первой искусственно вызванной ядерной реакции (Э. Резерфорд, 1919, превращение ядер азота в ядра кислорода) участвовали именно альфа-частицы. Поток альфа-частиц называют альфа-лучами или альфа-излучением[2].
Альфа-частицы возникают при альфа-распаде ядер, при ядерных реакциях и в результате полной ионизации атомов гелия-4. Например, в результате взаимодействия ядра лития-6 с дейтроном могут образоваться две альфа-частицы: 6Li+2H=4He+4He. Альфа-частицы составляют существенную часть первичных космических лучей; большинство из них являются ускоренными ядрами гелия из звёздных атмосфер и межзвёздного газа, некоторые возникли в результате ядерных реакций скалывания из более тяжёлых ядер космических лучей. Альфа-частицы высоких энергий могут быть получены с помощью ускорителей заряженных частиц.
Масса альфа-частицы составляет 4,001506179125(62) атомной единицы массы (около 6,644656⋅10−27 кг), что эквивалентно энергии 3,727379240(82) ГэВ. Спин и магнитный момент равны нулю. Энергия связи составляет 28,11 МэВ (7,03 МэВ на нуклон)[1]. Заряд альфа-частицы равен удвоенному элементарному заряду, или примерно 3,218·10−19 Кл.
Тяжёлые заряженные частицы взаимодействуют в основном с атомными электронами и поэтому мало отклоняются от направления своего первоначального движения. Вследствие этого пробег тяжёлой частицы R измеряют расстоянием по прямой от источника частиц до точки их остановки. Обычно пробег измеряется в единицах длины (м, см, мкм), а также поверхностной плотности материала (или, что равнозначно, длины пробега, умноженной на плотность) (г/см2). Выражение пробега в единицах длины имеет смысл для фиксированной плотности среды (например, часто в качестве среды выбирается сухой воздух при нормальных условиях). Физический смысл пробега в терминах поверхностной плотности — масса единицы площади слоя, достаточного для остановки частицы.
Среда | Энергия α-частиц, МэВ | |||
---|---|---|---|---|
4 | 6 | 8 | 10 | |
Длина пробега α-частицы, мм | ||||
Воздух при нормальных условиях | 25 | 46 | 74 | 106 |
Биологическая ткань | 0,031 | 0,056 | 0,096 | 0,130 |
Алюминий | 0,016 | 0,030 | 0,048 | 0,069 |
Детектируются альфа-частицы с помощью сцинтилляционных детекторов, газоразрядных детекторов, кремниевых pin-диодов (поверхностно-барьерных детекторов, нечувствительных к бета- и гамма-излучению) и соответствующей усилительной электроники, а также с помощью трековых детекторов. Для детектирования альфа-частиц с энергиями, характерными для радиоактивного распада, необходимо обеспечить малую поверхностную плотность экрана, отделяющего чувствительный объём детектора от окружающей среды. Например, в газоразрядных детекторах может устанавливаться слюдяное окно с толщиной в несколько микрон, проницаемое для альфа-частиц. В полупроводниковых поверхностно-барьерных детекторах такой экран не нужен, рабочая область детектора может непосредственно контактировать с воздухом. При детектировании альфа-активных радионуклидов в жидкостях исследуемое вещество смешивается с жидким сцинтиллятором.
В настоящее время наиболее распространены кремниевые поверхностно-барьерные детекторы альфа-частиц, в которых на поверхности полупроводникового кристалла с проводимостью p-типа создаётся тонкий слой с проводимостью n-типа путём диффузионного введения донорной примеси (например, фосфора). Приложение обратного смещения к p-n-переходу обедняет чувствительную область детектора носителями заряда. Попадание в эту область альфа-частицы, ионизирующей вещество, вызывает рождение нескольких миллионов электронно-дырочных пар, которые вызывают регистрируемый импульс тока с амплитудой, пропорциональной количеству родившихся пар и, соответственно, кинетической энергии поглощённой альфа-частицы. Поскольку обеднённая область имеет очень малую толщину, детектор чувствителен лишь к частицам с высокой плотностью ионизации (альфа-частицы, протоны, осколки деления, тяжёлые ионы) и малочувствителен к бета- и гамма-излучению.
Вышеописанный механизм рождения электронно-дырочных пар альфа-частицей в полупроводниках может вызвать несанкционированное переключение полупроводникового триггера при попадании альфа-частицы с достаточной энергией на кремниевый чип. При этом единичный бит в памяти заменяется нулевым (или наоборот). Для уменьшения количества таких ошибок материалы, используемые в производстве микросхем, должны обладать низкой собственной альфа-активностью.
Альфа-частицы, образованные при распаде ядра, имеют начальную кинетическую энергию в диапазоне 1,8—15 МэВ[3]. При движении альфа-частицы в веществе, она создаёт сильную ионизацию окружающих атомов, и в результате этого очень быстро теряет энергию. Энергии альфа-частиц, возникающих в результате радиоактивного распада, не хватает даже для преодоления мёртвого слоя кожи, поэтому радиационный риск при внешнем облучении такими альфа-частицами отсутствует. Внешнее альфа-облучение опасно для здоровья только в случае высокоэнергичных альфа-частиц (с энергией выше десятков МэВ), источником которых является ускоритель. Однако проникновение альфа-активных радионуклидов внутрь тела, когда облучению подвергаются непосредственно живые ткани организма, весьма опасно для здоровья, поскольку большая плотность ионизации вдоль трека частицы сильно повреждает биомолекулы. Считается[4], что при равном энерговыделении (поглощённой дозе) эквивалентная доза, набранная при внутреннем облучении альфа-частицами с энергиями, характерными для радиоактивного распада, в 20 раз выше, чем при облучении гамма- и рентгеновскими квантами. Однако следует отметить, что линейная передача энергии высокоэнергичных альфа-частиц (с энергиями 200 МэВ и выше) значительно меньше, поэтому их относительная биологическая эффективность сравнима с таковой для гамма-квантов и бета-частиц.
Таким образом, опасность для человека при внешнем облучении могут представлять α-частицы с энергиями 10 МэВ и выше, достаточными для преодоления омертвевшего рогового слоя кожного покрова. В то же время большинство исследовательских ускорителей α-частиц работает на энергиях ниже 3 МэВ[5].
Гораздо бо́льшую опасность для человека представляют α-частицы, возникающие при альфа-распаде радионуклидов, попавших внутрь организма (в частности, через дыхательные пути или пищеварительный тракт)[6]. Достаточно микроскопического количества α-радиоактивного вещества (например полония-210), чтобы вызвать у пострадавшего острую лучевую болезнь, зачастую с летальным исходом[6].
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .