WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте
Гелий-3
Название, символ Гелий-3, 3He
Нейтронов 1
Свойства нуклида
Атомная масса 3,0160293191(26)[1] а. е. м.
Дефект массы 14 931,2148(24)[1] кэВ
Удельная энергия связи (на нуклон) 2 572,681(1)[1] кэВ
Изотопная распространённость 0,000137(3)[2] %
Период полураспада стабильный[2]
Родительские изотопы 3H (β)
Спин и чётность ядра 1/2+[2]
Таблица нуклидов

Ге́лий-3 — более лёгкий из двух стабильных изотопов гелия. Ядро гелия-3 (гелион) состоит из двух протонов и одного нейтрона, в отличие от гелия-4, имеющего в составе два протона и два нейтрона.

Распространённость

Природная изотопная распространённость гелия-3 в атмосфере Земли составляет 0,000137 % (1,37 частей на миллион по отношению к гелию-4); в других резервуарах она может очень сильно отличаться в результате природного фракционирования и т. п.[2]. Общее количество гелия-3 в атмосфере Земли оценивается в 35 000 тонн. Оба изотопа гелия постоянно улетучиваются из атмосферы в космос, однако убыль гелия-4 на Земле восполняется за счёт альфа-распада урана, тория и их дочерних нуклидов (альфа-частица представляет собой ядро гелия-4). В отличие от более тяжёлого изотопа, гелий-3 не появляется в процессах радиоактивного распада (за исключением распада космогенного трития). Бо́льшая часть гелия-3 на Земле сохранилась со времён её образования. Он растворён в мантии и постепенно поступает в атмосферу; его изотопная распространённость в мантийной магме составляет 4—10 частей на миллион частей гелия-4[3], а некоторые материалы мантийного происхождения имеют в 10—40 раз большее соотношение, чем в атмосфере[4][5]. Однако его поступление из мантии в атмосферу (через вулканы и разломы в коре) оценивается всего в несколько килограммов в год. Некоторая часть гелия-3 возникает при распаде трития, в реакциях скалывания на литии (под действием альфа-частиц и космических лучей), а также поступает из солнечного ветра. На Солнце и в атмосферах планет-гигантов первичного гелия-3 значительно больше, чем в атмосфере Земли.

В лунном реголите гелий-3 постепенно накапливался в течение миллиардов лет облучения солнечным ветром. В результате тонна лунного грунта (в тончайшем приповерхностном слое) содержит порядка 0,01 г гелия-3 (до 50 ppb[6]) и 28 г гелия-4; это изотопное соотношение (~0,043 %) значительно выше, чем в земной атмосфере[7].

Открытие

Существование гелия-3 было предположено австралийским ученым Марком Олифантом во время работы в Кембриджском университете в 1934 году. Окончательно открыли этот изотоп Луис Альварес и Роберт Корног в 1939 году.

Физические свойства

Атомная масса гелия-3 равна 3,016 (у гелия-4 она равна 4,0026, ввиду чего их физические свойства весьма отличаются). Гелий-3 кипит при 3,19 К (гелий-4 — при 4,23 К), его критическая точка равна 3,35 К (у гелия-4 — 5,19 К). Плотность жидкого гелия-3 при температуре кипения и нормальном давлении равна 59 г/л, тогда как у гелия-4 она равна 124,73 г/л, в 2 раза больше. Удельная теплота испарения равна 26 Дж/моль (у гелия-4 — 82,9 Дж/моль).

Газообразный гелий-3 при нормальных условиях (T = 273,15 K = 0 °C, P = 101 325 Па) имеет плотность 0,1346 г/л. Соответственно, объём одного грамма гелия-3 при н.у. равен 7,43 литра.

Жидкий гелий-3

Квантовая жидкость, существенно отличающаяся по свойствам от жидкого гелия-4. Жидкий гелий-3 удалось получить только в 1948 году. В 1972 году в жидком гелии-3 был обнаружен фазовый переход в сверхтекучее состояние при температурах ниже 2,6 мК и при давлении 34 атм (ранее считалось, что сверхтекучесть, как и сверхпроводимость — явления, характерные для бозе-конденсата, то есть кооперативные явления в среде с целочисленным спином объектов). За открытие сверхтекучести гелия-3 в 1996 году Д. Ошерову, Р. Ричардсону и Д. Ли была присуждена Нобелевская премия по физике.

В 2003 году Нобелевской премией по физике отмечены А. А. Абрикосов, В. Л. Гинзбург и Э. Леггет, в том числе и за создание теории сверхтекучести жидкого гелия-3[8]/

Получение

В настоящее время гелий-3 не добывается из природных источников (на Земле доступны незначительные количества гелия-3, чрезвычайно трудные для добычи), а создаётся при распаде искусственно полученного трития[9].

Тритий производится отдельными государствами как компонент для термоядерного оружия путём облучения бора-10 и лития-6 в ядерных реакторах. Несколько сотен тысяч литров гелия-3 были наработаны в рамках оружейных ядерных программ, однако эти запасы уже недостаточны для существующего в США спроса. Дополнительно около 8 тыс. литров гелия-3 в год получают из распада запасов трития в США[10]. В связи с растущей нехваткой гелия-3 рассматривались такие ранее экономически нецелесообразные возможности его производства, как получение в водных ядерных реакторах, выделение из продуктов работы тяжеловодных ядерных реакторов, производство трития или гелия-3 на ускорителях частиц, экстракция естественного гелия-3 из природного газа или атмосферы[11]

Стоимость

Средняя цена гелия-3 в 2009 году составляла, по некоторым оценкам, порядка 930 USD за литр[12].

Планы добычи гелия-3 на Луне

Гелий-3 является побочным продуктом реакций, протекающих на Солнце, и в некотором количестве содержится в солнечном ветре и межпланетной среде. Попадающий в атмосферу Земли из межпланетного пространства гелий-3 быстро диссипирует обратно[13], его концентрация в атмосфере чрезвычайно низка[14]

Луна, у которой нет атмосферы, сохраняет значительные количества гелия-3 в поверхностном слое, по отдельным оценкам до 500 тыс. тонн[15], по другим — не менее 2,5 млн тонн[16].

Гипотетически, при термоядерном синтезе, когда в реакцию вступает 1 тонна гелия-3 с 0,67 тоннами дейтерия, высвобождается энергия, эквивалентная сгоранию 15 млн тонн нефти[17] (однако на настоящий момент не изучена техническая возможность осуществления данной реакции). Следовательно, населению нашей планеты лунного ресурса гелия-3 (по максимальным оценкам) могло бы хватить примерно на пять тысячелетий[17]. Основной проблемой (если проигнорировать проблему реализуемости управляемых термоядерных реакторов с подобным горючим) остаётся реальность добычи гелия из лунного реголита. Как упомянуто выше, содержание гелия-3 в реголите составляет ~1 г на 100 т. Поэтому для добычи тонны этого изотопа следует переработать на месте не менее 100 млн тонн грунта.

NASA разрабатывала эскизные проекты гипотетических установок по переработке реголита и выделению гелия-3[18].

В январе 2006 года глава РКК «Энергия» Николай Севастьянов заявил, что Россия планирует создать постоянную базу на Луне и отработать транспортную схему по доставке на Землю гелия-3 уже к 2015 году (при условии достаточного финансирования), а ещё через 5 лет начать промышленную добычу изотопа[19][значимость факта?]. В ноябре 2018 года глава «Роскосмоса» Дмитрий Рогозин вновь подтвердил возможность использования гелия-3 как основы для ракетного топлива[20]. Одновременно с Дмитрием Рогозиным академик РАН Лев Зелёный заявил о практической бесполезности добычи гелия-3[21].

Использование

Бо́льшая часть производимого в мире гелия-3 используется для наполнения газовых детекторов нейтронов. Остальные применения пока не выходят за пределы научных лабораторий[22].

Счётчики нейтронов

Газовые счётчики, наполненные гелием-3, используются для детектирования нейтронов. Это наиболее распространённый метод измерения нейтронного потока. В этих счётчиках происходит реакция

n + 3He → 3H + 1H + 0,764 МэВ.

Заряженные продукты реакции — тритон и протон — регистрируются газовым счётчиком, работающим в режиме пропорционального счётчика или счётчика Гейгера-Мюллера.

Значительно возросшее после 2001 года производство нейтронных мониторов (для обнаружения незаконно перевозимых делящихся материалов и предотвращения ядерного терроризма) привело к сокращению запасов гелия-3; так, запасы, принадлежащие правительству США, с 1990 по 2001 год монотонно росли со 140 до 235 тыс. литров н.у., но к 2010 году уменьшились до 50 тыс. л н.у.[22]

Получение сверхнизких температур

Путём растворения жидкого гелия-3 в гелии-4 достигают милликельвиновых температур[23].

Медицина

Поляризованный гелий-3[7] (он может долго храниться) недавно начал использоваться в магнитно-резонансной томографии для получения изображения лёгких с помощью ядерного магнитного резонанса.

Гелий-3 как ядерное топливо

Реакция 3Не + D → 4Не + p имеет ряд преимуществ по сравнению с наиболее достижимой в земных условиях дейтериево-тритиевой реакцией T + D → 4Не + n. К этим преимуществам относятся:

  1. В десятки раз более низкий поток нейтронов из зоны реакции, что резко уменьшает наведённую радиоактивность и деградацию конструкционных материалов реактора;
  2. Получаемые протоны, в отличие от нейтронов, легко улавливаются и могут быть использованы для дополнительной генерации электроэнергии, например, в МГД-генераторе;
  3. Исходные материалы для синтеза неактивны и их хранение не требует особых мер предосторожности;
  4. При аварии реактора с разгерметизацией активной зоны радиоактивность выброса близка к нулю.

Недостатком гелий-дейтериевой реакции следует считать практическую невозможность поддержания требуемых температур. При температурах менее 109 К термоядерная реакция слияния ядер дейтерия между собой протекает гораздо охотнее, и реакции между дейтерием и гелием-3 не происходит. При этом теплопотери за счет излучения быстро возрастают с температурой и горячая плазма будет остывать быстрее, чем сможет восполнять потери энергии за счет термоядерных реакций.

В искусстве

В фантастических произведениях (играх, фильмах, аниме) гелий-3 иногда выступает в качестве основного топлива и как ценный ресурс, добываемый в том числе на Луне.

Основой сюжета британского научно-фантастического фильма 2009 года «Луна 2112», является работа горнодобывающего комплекса компании «Лунар». Комплекс обеспечивает добычу изотопа гелий-3, с помощью которого удалось остановить катастрофический энергетический кризис на Земле.

В политической комедии «Железное небо», лунный гелий-3 стал причиной международного ядерного конфликта за право добычи.

В аниме «Planetes» гелий-3 используется как топливо для двигателей ракет и т. д.

Литература

Примечания

  1. 1 2 3 Audi G., Wapstra A. H., Thibault C. The AME2003 atomic mass evaluation (II). Tables, graphs, and references (англ.) // Nuclear Physics A. — 2003. Vol. 729. P. 337—676. DOI:10.1016/j.nuclphysa.2003.11.003. Bibcode: 2003NuPhA.729..337A.
  2. 1 2 3 4 Audi G., Bersillon O., Blachot J., Wapstra A. H. The NUBASE evaluation of nuclear and decay properties // Nuclear Physics A. — 2003. Т. 729. С. 3—128. DOI:10.1016/j.nuclphysa.2003.11.001. Bibcode: 2003NuPhA.729....3A.
  3. Don L. Anderson, Helium-3 from the Mantle: Primordial Signal or Cosmic Dust? // SCIENCE, Vol. 261, 1993, pp. 170—176: «Magmas from the mantle generally have 3He/4He ratios between 4⋅10−6 and 10−5; the higher values are often found at hotspots».
  4. Are high 3 He/4 He ratios in oceanic basalts an indicator of deep-mantle plume components? // Earth and Planetary Science Letters 208.3 (2003): 197—204. "Oceanic Island Basalt (OIB). Some OIBs, but certainly not all, are characterized by 3He/4He ratios in the range of 9 to 42 RA; where RA is the present day atmospheric 3He/4He ratio of 1,39⋅10−6 [8, 18]."
  5. The 3He/4He ratio of the new internal He Standard of Japan (HESJ) // Geochemical Journal, Vol. 36, pp. 191–195, 2002 «Thus many terrestrial samples of mantle origin have 3He/4He ratios higher than the air value by about an order of magnitude».
  6. http://io9.com/5908499/could-helium-3-really-solve-earths-energy-problems "Best estimates of Helium-3 content place it at 50 parts per billion in lunar soil, calling for the refining of millions of tons of lunar soil before gathering enough Helium-3 to be useful in fusion reactions on Earth."
  7. 1 2 Добрый доктор гелий-3 / Популярная Механика, № 113, март 2012 (копия).
  8. Сверхтекучий 3He: ранняя история глазами теоретика — нобелевская лекция Э. Дж. Леггетта, УФН, т. 174, № 11, 2003 г.
  9. Shea D. A., Morgan D. The Helium-3 Shortage: Supply, Demand, and Options for Congress // Congressional Research Service, December 22, 2010  (англ.): "How Is Helium-3 Made? ... federal government produces tritium for use in nuclear warheads. Tritium decays into helium-3 ... The U.S. producer of helium-3 is the National Nuclear Security Administration of the Department of Energy (DOE). "
  10. Shea D. A., Morgan D. The Helium-3 Shortage: Supply, Demand, and Options for Congress // Congressional Research Service, December 22, 2010  (англ.): "helium-3 stockpile grew from roughly 140,000 liters in 1990 to roughly 235,000 liters in 2001.17 Since 2001, however, helium-3 demand has exceeded production. By 2010, the increased demand had reduced the stockpile to roughly 50,000 liters. ... decay of tritium held by the U.S. nuclear weapons program currently generates approximately 8,000 liters of new helium-3 per year."
  11. Shea D. A., Morgan D. The Helium-3 Shortage: Supply, Demand, and Options for Congress // Congressional Research Service, December 22, 2010  (англ.): "Potential additional sources of helium-3 include increased production of tritium in light-water nuclear reactors ...; extraction of tritium produced as a byproduct in commercial heavy-water nuclear reactors; production of either tritium or helium-3 using particle accelerators; and extraction of naturally occurring helium-3 from natural gas or the atmosphere. "
  12. Survey of Critical Use of 3He for Cryogenic Purposes // Northwestern University, 2009
  13. Specific Arguments — Helium // infidels.org — SECULAR WEB LIBRARY
  14.  — «atmosphere contains a small quantity of helium, a fraction of which is helium-3. …The concentration of helium in the atmosphere is only about 5 parts per million»
  15. Колонизация Солнечной системы отменяется // 3DNews, 4 марта 2007
  16. THE ESTIMATION OF HELIUM-3 PROBABLE RESERVES IN LUNAR REGOLITH. / Lunar and Planetary Science XXXVIII (2007), lpi.usra.edu
  17. 1 2 Добыча гелия-3 на Луне обеспечит землян энергией на 5 тыс. лет // РИА Новости, 25.07.2012
  18. Sviatoslavsky I.N. PROCESSES AND ENERGY COSTS FOR MINING LUNAR HELIUM-3, 1989
  19. Алина Черноиванова.«Луна в реакторе». Газета.ру. 2006-01-26.
  20. "Роскосмос" изучит возможность использования лунного грунта в 3D-печати. «РИА Новости». 2018-11-04. «Плюс к этому будет возможность, как говорят в Академии наук, использования гелия-3 как основы для ракетного топлива».
  21. Валерий Чумаков. «Луна - наш седьмой континент». Интервью с академиком РАН Львом Зелёным, «В мире науки». № 11, 2018 « ...если человечество когда-нибудь решит задачу удержания сверхгорячей плазмы, нам уже не понадобится никакой лунный гелий-3, обойдемся бором. Так что пока с колумбовыми обещаниями у нас сложности, сильно обогатиться за счет Луны в материальном плане вряд ли получится».
  22. 1 2 Shea D. A., Morgan D. The Helium-3 Shortage: Supply, Demand, and Options for Congress // Congressional Research Service, December 22, 2010  (англ.).
  23. 3He-4He Dilution Explanation / Berkeley  (англ.)

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2024
WikiSort.ru - проект по пересортировке и дополнению контента Википедии