Возможно, эта статья содержит оригинальное исследование. |
SLinCA@Home | |
---|---|
![]() | |
Тип | Грид, распределенные вычисления, волонтёрские вычисления |
Разработчик | ИМФ НАНУ |
Операционная система | Linux, Windows |
Первый выпуск | 14 сентября 2010 |
Аппаратная платформа | BOINC, SZTAKI Desktop Grid, XtremWeb-HEP, OurGrid |
Состояние | Альфа |
Сайт | dg.imp.kiev.ua |
SLinCA@Home (Scaling Laws in Cluster Aggregation — Масштабно-инвариантные закономерности в агрегации кластеров) — это научно-исследовательский проект, который использует компьютеры, соединенные глобальной сетью Интернет, для исследований в области материаловедения.
SLinCA@Home основан группой научных сотрудников из Института металлофизики им. Г. В. Курдюмова (ИМФ) Национальной академии наук Украины (НАНУ), Киев, Украина. Этот проект использует программное обеспечение Berkeley Open Infrastructure for Network Computing (BOINC), платформу SZTAKI Desktop Grid, и API для распределенных вычислений (DC-API) от SZTAKI. SLinCA@Home включает несколько научных приложений посвященных поиску масштабно-инвариантных закономерностей в экспериментальных данных и результатах компьютерного моделирования.
Проект SLinCA@Home ранее был запущен в январе 2009 г. как часть проекта EDGeS Седьмой Рамочной Программы (Seventh Framework Programme — FP7) Европейского Союза (EC) для финансирования научных исследований и технологического развития в Европе. В 2009—2010 он использовал мощности локального «Настольного Грида» (НГ) ИМФ, но с декабря 2010 года использует инфраструктуру распределенных вычислений, которая предоставляется волонтёрами для решения сложных вычислительных задач, связанных с поиском масштабно-инвариантных закономерностей в экспериментально полученых и моделированых научных данных. Сейчас проект управляется группой учёных из ИМФ НАНУ в тесном сотрудничестве с партнерами из IDGF и Distributed Computing team 'Ukraine'. С июня 2010 SLinCA@Home работает в рамках проекта DEGISCO FP7 ЕС.
Сейчас SLinCA@Home имеет статус альфа-версии, что связано с постепенной модернизацией серверной и клиентской частей.
По неофициальной статистике BOINCstats (недоступная ссылка) (по состоянию на 16 марта 2011) более 2000 волонтёров из 39 стран приняли участие в проекте, сделав его вторым по популярности BOINC проектом на Украине (после проекта Magnetism@Home, который сейчас не активен).[1] Около 700 активных пользователей обеспечивают приблизительно 0.5-1.5 TFLOPS[2] вычислительной мощности, которая позволила бы SLinCA@Home попасть в лучшую 20-ку списка TOP500 суперкомпьютеров … по состоянию на июнь 2005 года.[3]
Сейчас, одно приложение (SLinCA) запущено на открытой глобальной инфраструктуре распределенных вычислений (SLinCA@Home), а три других (MultiScaleIVideoP, CPDynSG, LAMMPS over DCI) находятся в стадии тестирования на закрытом локальном Настольном Гриде (НГ) ИМФ.
Проект SLinCA@Home был создан для поиска неизвестных ранее масштабно-инвариантных закономерностей по результатам экспериментов и моделирования в следующих научных приложениях
SLinCA | |
---|---|
![]() | |
Тип | Грид, распределенные вычисления, волонтёрские вычисления |
Разработчик | ИМФ НАНУ |
Написана на | C, C++ |
Операционная система | Linux (32-bit), Windows (32-bit) |
Первый выпуск | 24 июля 2007 |
Аппаратная платформа | BOINC, SZTAKI Desktop Grid, XtremWeb-HEP, OurGrid |
Состояние | Активный |
Сайт | dg.imp.kiev.ua |
SLinCA (Scaling Laws in Cluster Aggregation) является первым приложеним портированным на DG инфраструктуру лабораторией физики деформационных процессов ИМФ НАНУ. Её целью является найти законы масштабной инвариантности в кинетическом сценарии агрегации мономера в кластерах различных видов и в различных научных областях.
Процессы агрегации кластеров исследуются во многих отраслях науки: агрегации дефектов в материаловедении, динамике популяций в биологии, росте и развитии городов в социологии, и т. д. Существующие экспериментальные данные свидетельствуют о наличии иерархической структуры на многих масштабных уровнях. Имеющиеся теории предлагают множество сценариев агрегации кластеров, формирования иерархических структур, и объяснения их масштабно-инвариантных свойств. Для их проверки необходимо использовать мощные вычислительные ресурсы для обработки огромных баз данных экспериментальных результатов. Обычное моделирование одного процесса агрегации кластеров с 106 мономерами занимает приблизительно 1-7 дней на одном современном процессоре, в зависимости от числа шагов в методе Монте-Карло. Выполнение SLinCA в Грид в инфраструктуре распределенных вычислений (ИРВ), позволяет использовать сотни машин с достаточной вычислительной мощностью для моделирования множества сценариев за гораздо более короткие сроки.
Типичные технические параметры для запуска ИРВ-версии приложения SLinCA в глобальной открытой инфраструктуре распределенных вычислений (ИРВ) (SLinCA@Home):
Предварительные результаты приложения SLinCA были получены на EGEE вычислительных ресурсах тестовых инфраструктур CETA-CIEMAT и XtremWeb-HEP LAL; опубликованы в 2009 в стендовом докладе 4th EDGeS training event and 3rd AlmereGrid Workshop, Алмере, Нидерланды (29-30 Марта, 2009).[4]
Текущая версия приложения SLinCA будет обновлена для стабильности чекпоинтов, новой функциональности и поддержки NVIDIA GPU-расчетов для выполнения анализа быстрее (по оценкам от 50 до 200 % быстрее). Дополнительная цель — это миграция на платформу OurGrid для тестирования и демонстрации потенциальных механизмов взаимодействия между мировими сообществами с различными парадигмами распределенных вычислений. SLinCA планируется портировать на платформу OurGrid, ориентированную на поддержку пиринговых настольных гридов, которые, по своей природе, очень отличаются от волонтёрских распределенных вычислений на базе «Настольного Грида» (НГ), как SZTAKI Desktop Grid.
MultiScaleIVideoP | |
---|---|
![]() | |
Тип | Грид, распределенные вычисления, волонтёрские вычисления |
Разработчик | ИМФ НАНУ (оболочка для среды РВ), Mathworks (библиотеки MATLAB) |
Написана на | C, C++, MATLAB |
Операционная система | Linux (32-bit), Windows (32-bit) |
Первый выпуск | 11 января 2008 |
Аппаратная платформа | MATLAB, BOINC, SZTAKI Desktop Grid, XtremWeb-HEP |
Состояние | Альфа |
Сайт | dg.imp.kiev.ua |
Оптическая микроскопия обычно используется для анализа структурных характеристик материалов в узких диапазонах увеличения, небольшой исследуемой области, и в статическом режиме. Однако множество критических процессов, связанных с началом и динамическим распространением разрушения наблюдаются в широком временном диапазоне от 10−3 с до 103 с и на многих масштабних уровнях от 10−6 м (одиночные дефекты) до 10−2 м (связанные сети дефектов). Приложение Multiscale Image and Video Processing (MultiscaleIVideoP) предназначено для обработки записанной эволюции материалов во время механической деформации на испытательной машине. Расчеты включают в себя множество параметров физического процесса (скорость, усилие, увеличение, условия освещения, аппаратные фильтры, и т. д.) и параметров обработки изображения (распределение по размерам, анизотропия, локализации, параметры масштабирования и т. д.). А потому расчеты очень трудоемки и выполняются очень медленно. Вот почему появилась крайняя необходимость использования более мощных вычислительных ресурсов. Выполнение этого приложения в инфраструктуре распределенных вычислений (ИРВ), позволяет использовать сотни машин с достаточной вычислительной мощностью для обработки изображений и видео в более широком диапазоне масштабов и за гораздо более короткие сроки.
Типичные технические параметры для запуска ИРВ-версии приложения MultiScaleIVideoP на закрытом локальном Настольном Гриде (НГ) ИМФ:
Предварительные результаты приложения MultiScaleIVideoP были получены на EGEE вычислительных ресурсах тестовых инфраструктур CETA-CIEMAT и XtremWeb-HEP LAL; опубликованы в 2009 в стендовом докладе 4th EDGeS training event and 3rd AlmereGrid Workshop, Алмере, Нидерланды (29-30 Марта, 2009).[5]
В январе, 2011 были получены и опубликованы дальнейшие результаты обработки данных видеонаблюдения в ходе экспериментов с циклическим стесненным нагружением алюминиевой фольги.[6]
Текущая версия приложения MultiScaleIVideoP будет обновлена для стабильности чекпоинтов, новой функциональности и поддержки NVIDIA GPU-расчетов для выполнения анализа быстрее (по оценкам от 300 до 600 % быстрее).
CPDynSG | |
---|---|
![]() | |
Тип | Грид, распределенные вычисления, волонтёрские вычисления |
Разработчик | ИМФ НАНУ |
Написана на | C, C++ |
Операционная система | Linux (32-bit), Windows (32-bit) |
Первый выпуск | 14 апреля 2010 |
Аппаратная платформа | BOINC, SZTAKI Desktop Grid |
Состояние | Альфа |
Сайт | dg.imp.kiev.ua |
Известно, что рост городов (муниципалитетов, округов и т. д.) объясняется миграцией, слиянием, ростом населения и т. д. Так замечено, что распределение городов по их размерам во многих странах подчиняется степенному закону. Эта зависимость подтверждается данными для популяций в различных городах в период их начальной истории. Население во всех крупных городах растет гораздо быстрее, чем страна в целом за значительный диапазон времени. Однако, как и в городах достигших зрелости, их рост может замедлиться или количество населения может даже снизиться по причинам, не связанным с миграцией в еще большие города. Различные теории дают темпы роста, асимптотики, и распределения таких групп населения. Важной особенностью приложения является сравнение имеющихся теорий с данными наблюдений и прогнозирования сценариев динамики устойчивого роста населения для различных национальных и международных регионов. Приложение City Population Dynamics and Sustainable Growth (CPDynSG) позволяет исследовать связь между огромным объемом экспериментальных данных и найти качественное соответствие между предсказаниями разных моделей и имеющимися историческими данными.
Типичные технические параметры для запуска ИРВ-версии приложения CPDynSG на закрытом локальном Настольном Гриде (НГ) ИМФ инфраструктуры:
В июне-сентябре 2010 года были получены результаты в отношении концепции, результатов портирования ИРВ-версии приложения CPDynSG на базе платформы Berkeley Open Infrastructure for Network Computing (BOINC), платформу SZTAKI Desktop Grid, и API для распределенных вычислений (DC-API) от SZTAKI, а также предварительные результаты для распределения размеров городов в нескольких странах Центральной и Восточной Европы. Отмечена характерная изоляция распределения размеров городов в Венгрии, а также обнаружена очень похожая эволюция распределения по размерам городов на Украине и в Польше. Эти результаты были представлены на Cracow Grid Workshop’10 (11-13 октября, 2010) в устном и стендовом [7] докладах. Представленный стенд был отмечен наградой «За лучший стендовый доклад Cracow Grid Workshop’09».
Текущая версия приложения CPDynSG будет обновлена для стабильности чекпоинтов, новой функциональности и поддержки NVIDIA GPU-расчетов для выполнения анализа быстрее (по оценкам от 50 до 200 % быстрее).
LAMMPS в ИРП | |
---|---|
![]() | |
Тип | Грид, распределенные вычисления, волонтёрские вычисления |
Разработчик | ИМФ НАНУ (оболочка для среды РВ), Sandia National Laboratories (LAMMPS itself) |
Написана на | C, C++ |
Операционная система | Linux (32-bit), Windows (32-bit) |
Первый выпуск | 4 июня 2010 |
Аппаратная платформа | BOINC, SZTAKI Desktop Grid |
Состояние | Альфа |
Сайт | dg.imp.kiev.ua |
Поиск новых наноразмерных функциональных устройств стал настоящим «Эльдорадо» современной науки и он стимулирует «Золотую лихорадку» в современном материаловедении. Но контролируемое производство наноразмерных функциональных устройств требует тщательного выбора и настройки критических параметров (элементов, потенциалов взаимодействия, режимов внешнего воздействия, температуры, и т. д.) атомной самоорганизации в разрабатываемых моделях и структурах для наномасштабных функциональных устройств. Вот почему молекулярно-динамическое моделирование процессов нанопроизводства с декомпозицией физических параметров и перебором параметров методом «грубой силы» является весьма перспективным. Для этой цели был выбран очень популярный некоммерческий пакет с открытым кодом LAMMPS «Large-scale Atomic/Molecular Massively Parallel Simulator» (LAMMPS) от Sandia National Laboratories как кандидат для портирования в инфраструктуру распределенных вычислений (ИРВ) на основе платформы Berkeley Open Infrastructure for Network Computing (BOINC), SZTAKI Desktop Grid, и API для распределенных вычислений (DC-API) от SZTAKI. Как правило, для такого моделирования нанообъектов со многими параметрами требуется чрезвычайно много вычислительных ресурсов. Типичное моделирование исследуемых наноструктур для одной конфигурации физических параметров — например, для моделирования физических процессов в течение 1-10 пикосекунд металлических монокристаллов (Al, Cu, Mo, итд.) с 107 атомов — требуется приблизительно 1-7 дней на одном современном ЦПУ. Выполнение LAMMPS в Грид в инфраструктуре распределенных вычислений (ИРВ) позволяет использовать сотни машин одновременно и получить огромное количество вычислительных ресурсов для проведения моделирования в широком диапазоне физических параметров (конфигураций) и в гораздо более короткие сроки.
Типичные технические параметры для запуска ИРВ-версии приложения MultiScaleIVideoP на закрытом локальном Настольном Гриде (НГ) ИМФ:
В сентябре-октябре 2010 полученные предварительные результаты были представлены в устной презентации на Международной Конференции «Наноструктурные материалы-2010» (недоступная ссылка), Киев, Украина [8]
Текущаяя версия LAMMPS с применением ИРП приложения будет обновлена для стабильности чекпоинтов, новой функциональности и поддержки NVIDIA GPU-расчетов для выполнения анализа быстрее (по оценкам от 300 до 500 % быстрее).
SLinCA@Home сотрудничает с
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .