Регуляторный фактор интерферона 8 (IRF8) известный также как последовательно-связывающий белок консенсуса интерферона (ICSBP) — белок, который у человека кодируется геномIRF8.[1][2][3] IRF8 является фактором транскрипции, который имеет несколько важных функций в регуляции коммитирования и в миелоидном[en] клеточном созревании, в том числе и в плане общего миелоидного предшественника (CMP), чтобы дифференцировать клетки-предшественники в моноциты.
Функция
Последовательно-связывающий белок консенсуса интерферона (ICSBP) является фактором транскрипции в семействе регуляторных факторов интерферона (IRF). Белки этого семейства состоят из консервативного ДНК-связывающего домена в N-концевой области[en] и расходящейся С-концевой[en] области, которая служит в качестве регуляторного домена. В семействе IRF белки связываются с ИФН-стимулированными элементами ответа (ISRE) и регулируют экспрессию генов, стимулированных интерфероном типа I, а именно IFN-α и IFN-β. Белки семейства IRF также контролируют экспрессию ИФН-α и ИФН-β-регуляторных генов, которая вызвана вирусной инфекцией.[1]
Нокаутные исследования
IFN-продуцирующие клетки (mIPCs) отсутствовали во всех лимфоидных органах у ICSBP нокаутных (KO) мышей, также обнаружено отсутствие CD11clowB220+Ly6C+CD11b− клеток. Параллельно, CD11c+ клетки, выделенные из селезенки ICSBP KO были неспособны произвести интерфероны типа I в ответ на вирусную стимуляцию. У мышей ICSBP KO было также выявлено заметное снижение подмножества дендритных клеток (DC), выражающее маркер CD8alpha (CD8alpha+ DCs) в селезёнке, лимфатических узлах и вилочковой железе. Кроме того, в ICSBP-дефицитных CD8alpha+ DC представлен заметно ослабленный фенотип по сравнению с WT DC. Они экспрессировали очень низкие уровни молекул костимуляторной (межклеточной адгезии ICAM1, CD40, CD80, CD86) и ареахоминг Т-клеток рецептора хемокинов CCR7.[4]
IRF8 экспрессируется на высоком уровне в миелоидных клетках, и был первоначально идентифицирован в качестве критического линейно-специфического фактора транскрипции для дифференцировки миелоидных клеток.[7] Недавние исследования, однако, показали, что IRF8 также экспрессируется в некроветворные клетки рака, хотя на низком уровне. Кроме того, IRF8 также может быть дополнительно регулируется IFN-γ в не-кроветворных клетках. IRF8 опосредует экспрессию Fas, Вах, FLIP[en], JAK1 и STAT1 для опосредования апоптоза в некроветворных раковых клетках.[8][9][10]
Анализ базы геномных данных рака у человека показал, что IRF8 существенно не усиливается по всему набору данных по более чем 3 тысячам опухолей, но был значительно в них снижен, поэтому предполагается, что IRF8 — потенциальный супрессор опухоли в организме человека.[11] Молекулярный анализ показал, что ген промотор IRF8 гиперметилирован в человеческие карциномы клеток толстой кишки,[10][12] указывая, что эти клетки могут использовать метилирование ДНК, чтобы подавить экспрессию IRF8 для продвижения болезни.
↑ Tamura T, Ozato K (January 2002). “ICSBP/IRF-8: its regulatory roles in the development of myeloid cells”. J. Interferon Cytokine Res. 22 (1): 145—52. DOI:10.1089/107999002753452755. PMID11846985.
↑ Yang D, Thangaraju M, Browning DD, Dong Z, Korchin B, Lev DC, Ganapathy V, Liu K (October 2007). “IFN regulatory factor 8 mediates apoptosis in nonhemopoietic tumor cells via regulation of Fas expression”. J. Immunol. 179 (7): 4775—82. DOI:10.4049/jimmunol.179.7.4775. PMID17878376.
1 2 Yang D, Thangaraju M, Greeneltch K, Browning DD, Schoenlein PV, Tamura T, Ozato K, Ganapathy V, Abrams SI, Liu K (April 2007). “Repression of IFN regulatory factor 8 by DNA methylation is a molecular determinant of apoptotic resistance and metastatic phenotype in metastatic tumor cells”. Cancer Res. 67 (7): 3301—9. DOI:10.1158/0008-5472.CAN-06-4068. PMID17409439.
↑ Sharf R, Azriel A, Lejbkowicz F, Winograd SS, Ehrlich R, Levi BZ (June 1995). “Functional domain analysis of interferon consensus sequence binding protein (ICSBP) and its association with interferon regulatory factors”. J. Biol. Chem. 270 (22): 13063—9. DOI:10.1074/jbc.270.22.13063. PMID7768900.
↑ Cohen H, Azriel A, Cohen T, Meraro D, Hashmueli S, Bech-Otschir D, Kraft R, Dubiel W, Levi BZ (December 2000). “Interaction between interferon consensus sequence-binding protein and COP9/signalosome subunit CSN2 (Trip15). A possible link between interferon regulatory factor signaling and the COP9/signalosome”. J. Biol. Chem. 275 (50): 39081—9. DOI:10.1074/jbc.M004900200. PMID10991940.
Литература
Weisz A, Marx P, Sharf R, Appella E, Driggers PH, Ozato K, Levi BZ (1993). “Human interferon consensus sequence binding protein is a negative regulator of enhancer elements common to interferon-inducible genes”. J. Biol. Chem. 267 (35): 25589—96. PMID1460054.
Sharf R, Azriel A, Lejbkowicz F, Winograd SS, Ehrlich R, Levi BZ (1995). “Functional domain analysis of interferon consensus sequence binding protein (ICSBP) and its association with interferon regulatory factors”. J. Biol. Chem. 270 (22): 13063—9. DOI:10.1074/jbc.270.22.13063. PMID7768900.
Holtschke T, Löhler J, Kanno Y, Fehr T, Giese N, Rosenbauer F, Lou J, Knobeloch KP, Gabriele L, Waring JF, Bachmann MF, Zinkernagel RM, Morse HC, Ozato K, Horak I (1996). “Immunodeficiency and chronic myelogenous leukemia-like syndrome in mice with a targeted mutation of the ICSBP gene”. Cell. 87 (2): 307—17. DOI:10.1016/S0092-8674(00)81348-3. PMID8861914.
Li W, Nagineni CN, Ge H, Efiok B, Chepelinsky AB, Egwuagu CE (1999). “Interferon consensus sequence-binding protein is constitutively expressed and differentially regulated in the ocular lens”. J. Biol. Chem. 274 (14): 9686—91. DOI:10.1074/jbc.274.14.9686. PMID10092656.
Li W, Nagineni CN, Hooks JJ, Chepelinsky AB, Egwuagu CE (1999). “Interferon-gamma signaling in human retinal pigment epithelial cells mediated by STAT1, ICSBP, and IRF-1 transcription factors”. Invest. Ophthalmol. Vis. Sci. 40 (5): 976—82. PMID10102295.
Rehli M, Poltorak A, Schwarzfischer L, Krause SW, Andreesen R, Beutler B (2000). “PU.1 and interferon consensus sequence-binding protein regulate the myeloid expression of the human Toll-like receptor 4 gene”. J. Biol. Chem. 275 (13): 9773—81. DOI:10.1074/jbc.275.13.9773. PMID10734131.
Cohen H, Azriel A, Cohen T, Meraro D, Hashmueli S, Bech-Otschir D, Kraft R, Dubiel W, Levi BZ (2001). “Interaction between interferon consensus sequence-binding protein and COP9/signalosome subunit CSN2 (Trip15). A possible link between interferon regulatory factor signaling and the COP9/signalosome”. J. Biol. Chem. 275 (50): 39081—9. DOI:10.1074/jbc.M004900200. PMID10991940.
Zhu C, Saberwal G, Lu Y, Platanias LC, Eklund EA (2005). “The interferon consensus sequence-binding protein activates transcription of the gene encoding neurofibromin 1”. J. Biol. Chem. 279 (49): 50874—85. DOI:10.1074/jbc.M405736200. PMID15371411.
Liu J, Guan X, Tamura T, Ozato K, Ma X (2005). “Synergistic activation of interleukin-12 p35 gene transcription by interferon regulatory factor-1 and interferon consensus sequence-binding protein”. J. Biol. Chem. 279 (53): 55609—17. DOI:10.1074/jbc.M406565200. PMID15489234.
Barrios-Rodiles M, Brown KR, Ozdamar B, Bose R, Liu Z, Donovan RS, Shinjo F, Liu Y, Dembowy J, Taylor IW, Luga V, Przulj N, Robinson M, Suzuki H, Hayashizaki Y, Jurisica I, Wrana JL (2005). “High-throughput mapping of a dynamic signaling network in mammalian cells”. Science. 307 (5715): 1621—5. DOI:10.1126/science.1105776. PMID15761153.
Xiong H, Li H, Kong HJ, Chen Y, Zhao J, Xiong S, Huang B, Gu H, Mayer L, Ozato K, Unkeless JC (2005). “Ubiquitin-dependent degradation of interferon regulatory factor-8 mediated by Cbl down-regulates interleukin-12 expression”. J. Biol. Chem. 280 (25): 23531—9. DOI:10.1074/jbc.M414296200. PMID15837792.
Zhao J, Kong HJ, Li H, Huang B, Yang M, Zhu C, Bogunovic M, Zheng F, Mayer L, Ozato K, Unkeless J, Xiong H (2006). “IRF-8/interferon (IFN) consensus sequence-binding protein is involved in Toll-like receptor (TLR) signaling and contributes to the cross-talk between TLR and IFN-gamma signaling pathways”. J. Biol. Chem. 281 (15): 10073—80. DOI:10.1074/jbc.M507788200. PMID16484229.
Dimberg A, Kårehed K, Nilsson K, Oberg F (2006). “Inhibition of monocytic differentiation by phosphorylation-deficient Stat1 is associated with impaired expression of Stat2, ICSBP/IRF8 and C/EBPepsilon”. Scand. J. Immunol. 64 (3): 271—9. DOI:10.1111/j.1365-3083.2006.01827.x. PMID16918696.
Leonard D, Svenungsson E, Sandling JK, Berggren O, Jönsen A, Bengtsson C, Wang C, Jensen-Urstad K, Granstam SO, Bengtsson AA, Gustafsson JT, Gunnarsson I, Rantapää-Dahlqvist S, Nordmark G, Eloranta ML, Syvänen AC, Rönnblom L (2013). “Coronary Heart Disease in Systemic Lupus Erythematosus Is Associated with Interferon Regulatory Factor 8 Gene Variants”. Circ. Cardiovasc. Genet. May 9. [Epub ahead of print]. 6 (3): 255—63. DOI:10.1161/CIRCGENETICS.113.000044. PMID23661672.
Huang W, Horvath E, Eklund EA (2007). “PU.1, interferon regulatory factor (IRF) 2, and the interferon consensus sequence-binding protein (ICSBP/IRF8) cooperate to activate NF1 transcription in differentiating myeloid cells”. J. Biol. Chem. 282 (9): 6629—43. DOI:10.1074/jbc.M607760200. PMID17200120.
Mattei F, Schiavoni G, Borghi P, Venditti M, Canini I, Sestili P, Pietraforte I, Morse HC, Ramoni C, Belardelli F, Gabriele L (2006). “ICSBP/IRF-8 differentially regulates antigen uptake during dendritic-cell development and affects antigen presentation to CD4+ T cells”. Blood. 108 (2): 609—617. DOI:10.1182/blood-2005-11-4490. PMID16569763.
Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.
2019-2025 WikiSort.ru - проект по пересортировке и дополнению контента Википедии