WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Шестиугольное число — фигурное число. n-ое шестиугольное число — число точек в состоящем из них правильном шестиугольнике со стороной в n точек.

Первые четыре шестиугольных числа.

Формула для n-го шестиугольного числа:

Последовательность шестиугольных чисел начинается так[1]:

1, 6, 15, 28, 45, 66, 91, 120, 153, 190, 231, 276, 325, 378, 435, 496, 561, 630, 703, 780, …

Свойства

  • Каждое шестиугольное число является треугольным числом, но лишь некоторые треугольные числа (первое, третье, пятое, седьмое и т. д.) являются шестиугольными. Как и треугольныe, шестиугольные числа делятся на 9 с остатком 0, 1, 3 или 6.
  • Каждое чётное совершенное число (полученное по формуле , где Mp — простое число Мерсенна) является шестиугольным. Так как ни одно нечетное совершенное число до сих пор не найдено[2][3], все известные совершенные числа — шестиугольные.
  • n-ое шестиугольное число можно записать в виде суммы:

Проверка на шестиугольность

Проверить, является ли натуральное число x шестиугольным, можно с помощью вычисления

Если n целое, то x является n-м шестиугольным числом. Если n не целое, то x шестиугольным не является.

См. также

Примечания


Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии