n-ое число такси, обычно обозначаемое Ta(n) или Taxicab(n), определяется как наименьшее число, которое может быть представлено как сумма двух положительных кубов n различными способами. Наиболее известное число такси — 1729 = Ta(2) = 13 + 123 = 93 + 103.
Название чи́сла получили из разговора в 1919 математиков Г. Х. Харди и Сриниваса Рамануджана. Харди рассказывал:
![]() | Я помню, пришёл раз навестить его (Рамануджана), лежащего в больнице в Питни. Я приехал на такси с номером 1729 и заметил в разговоре, что число скучное, и что я надеюсь, что это не является неблагоприятным знаком. «Нет, — ответил тот, — число очень интересно, это наименьшее натуральное число, представимое в виде суммы кубов двумя различными способами!»[1][2] | ![]() |
Концепция впервые была упомянута в 1657 Бернардом Френиклю и стала знаменитой в начале 20-го века благодаря Сринивасу Рамануджану. В 1938 Харди и Райт доказали, что такие числа существуют для всех положительных целых чисел n, и их доказательство легко превратить в программу для генерации таких чисел. Однако это доказательство не заботится о том, чтобы это число было минимальным , так что его нельзя использовать для поиска фактических значений Ta(n).
Ограничение на знак членов суммы необходимо, поскольку допущение отрицательных значений позволяет представить большее количество (и меньших) чисел выразить в виде суммы кубов n различными способами. Концепция числа извозчика[en] была предложена как менее ограничивающая альтернатива. В известном смысле количество слагаемых (два) и степень (куб) также является существенным ограничением. Обобщённое число такси[en] позволяет иметь более двух слагаемых и использовать другие степени.
Известны следующие шесть чисел такси последовательность A011541 в OEIS:
Число Ta(2), известное также как число Харди –Рамануджана, первым опубликовал Бернард Френиклю в 1657.
Джон Лич получил Ta(3) в 1957. Е. Розенталь, Дж. А. Дардис и К. Р. Розенталь нашли Ta(4) в 1989 [3]. Дж. А. Дардис нашёл Ta(5) в 1994 и подтвердил Дэвид В. Уилсон в 1999 [4][5]. О числе Ta(6) объявид Уве Холлербах на сайте NMBRTHRY (Number Theory Wiki) 9 марта 2008 [6][7]. Верхние границы для чисел Ta(7) — Ta(12) нашёл Христиан Бойер в 2006[8].
Задача чисел такси с более строгими ограничениями, в которой требуется, чтобы числа не содержали кубы, то есть что числа не делились на кубы чисел, отличных от 13. Тогда число такси T записывается как T = x3 + y3, где числа x и y должны быть взаимно просты. Среди чисел такси Ta(n), перечисленных выше, только Ta(1) и Ta(2) не содержат кубов. Наименьшее число такси без кубов с тремя вариантами представления обнаружил Поль Войта[en] (не опубликовано) в 1981, когда он был аспирантом. Эти числа
Наименьшее число такси без кубов с четырьмя вариантами представления обнаружил Стюарт Гаскойн и, независимо, Дункан Мур в 2003. Это числа
Для улучшения этой статьи желательно: |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .