WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Центрированное девятиугольное число — это центрированное фигурное число, которое представляет девятиугольник с точкой в середине и все окружающие точки лежат на девятиугольных слоях. Центрированное девятиугольное число для n задается формулой

Умножая (n — 1)-ое треугольное число на 9 и добавляя 1 получим n-ое центрированное девятиугольное число, но имеется и более простая связь с треугольными числами — каждое третье треугольное число (1-ое, 4-ое, 7-ое, и т. д.) также центрированное девятиугольное число.

Первые несколько центрированных девятиугольных чисел

1, 10, 28, 55, 91, 136, 190, 253, 325, 406, 496, 595, 703, 820, 946 (последовательность A060544 в OEIS)

Заметьте, что следующие совершенные числа встречаются в списке:

3-е центрированное девятиугольное число есть 7 x 8 / 2 = 28, и 11-ое есть 31 x 32 / 2 = 496.
Далее: 43-ое есть 127 x 128 / 2 = 8128, и 2731-ое есть 8191 x 8192 / 2 = 33,550,336.
За исключением 6, все четные совершенные числа являются также центрированными девятиугольными числами, по формуле
где 2p−1 — простые числа Мерсена.

В 1850-м году, Поллок высказал предположение, что любое натуральное есть сумма максимум одиннадцати центрированных девятиугольных чисел, которое ни доказано ни опровергнуто.

См. также

Ссылки

Sloane, N. J. A. and Plouffe, S. Figure M3826 in The Encyclopedia of Integer Sequences. San Diego: Academic Press, 1995.

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии