Применения
- Функция находит применение в обработке сигналов и радиосвязи, представляя собой идеализированный сигнал, являющийся составной частью более сложных реальных сигналов. Также применяется в широтно-импульсной модуляции для передачи и детектирования цифровых сигналов.
- Используется в спектральном анализе по ограниченной выборке данных как оконная функция, в этом случае её обычно называют «окном Бартлета».
- Подобные функции используются в методе конечных элементов, в качестве базиса первого порядка[1].
Свойства
Преобразование Фурье треугольного импульса:
Эти результаты следуют из преобразования Фурье прямоугольной функции и свойства свёртки преобразований Фурье двух сигналов.
Примечания
- ↑ Соловейчик Ю. Г., Рояк М. Э., Персова М. Г. Метод конечных элементов для скалярных и векторных задач. — Новосибирск: НГТУ, 2007. — 896 с. — ISBN 978-5-7782-0749-9.
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .