Преде́л в теории категорий — понятие, обобщающее свойства таких конструкций, как произведение, декартов квадрат и обратный предел. Двойственное понятие копредела обобщает свойства таких конструкций, как дизъюнктное объединение, копроизведение, кодекартов квадрат и прямой предел.
Пределы и копределы, как и тесно связанные с ними понятия универсального свойства и сопряжённых функторов являются понятиями высокого уровня абстракции. Чтобы лучше их понять, полезно сначала изучить примеры конструкций, которые эти понятия обобщают.
Пределы и копределы определяются при помощи диаграмм. Диаграмма типа J в категории C — это функтор:
Наибольший интерес представляет случай, когда J — малая или конечная категория. В этом случае диаграмма J называется малой или конечной.
Пусть F — диаграмма типа J в категории C. Конус в F — это объект N в C вместе с семейством морфизмов ψX : N → F(X), индексированным объектами X диаграммы J, такой что для любого морфизма f : X → Y в J верно F(f) o ψX = ψY.
Предел диаграммы F : J → C — это конус (L, φ) в F такой, что для любого конуса (N, ψ) в F существует единственный морфизм u : N → L, такой что φX o u = ψX для всех X в J.[1]
Аналогичным образом определяется понятие копредела — нужно обратить все стрелки. А именно:
Коконус диаграммы F : J → C — это объект N категории C вместе с семейством морфизмов:
для каждого X в J, такой, что для любого морфизма f : X → Y в J верно ψY o F(f) = ψX.
Копредел диаграммы F : J → C — это коконус (L, φ) такой, что для любого другого коконуса (N, ψ) существует единственный морфизм u : L → N, такой, что u o φX = ψX для всех X в J.
Как и любые универсальные объекты, пределы и копределы не всегда существуют, но если существуют, то определены с точностью до изоморфизма.
В примерах рассматривается предел (L, φ) диаграммы F : J → C.
Говорят, что категория имеет пределы типа J, если любая диаграмма типа J имеет предел.
Категория называется полной, если она имеет предел для любой малой диаграммы (то есть диаграммы, элементы которой образуют множество). Аналогично определяются конечно полные и кополные категории.
Рассмотрим категорию C с диаграммой J. Категорию функторов CJ можно считать категорией диаграмм типа J в C. Диагональный функтор — это функтор, отображающий элемент N категории C в постоянный функтор Δ(N) : J → C, отображающий всё в N.
Для данной диаграммы F: J → C (понимаемой как объект CJ), естественное преобразование ψ : Δ(N) → F (понимаемое как морфизм категории CJ) — то же самое, что конус из N в F. Компоненты ψ — морфизмы ψX : N → F(X). Определения предела и копредела можно переписать как[3]:
Функтор G : C → D индуцирует отображение из Cone(F) в Cone(GF). G сохраняет пределы в F, если (GL, Gφ) — предел GF, когда (L, φ) — предел F[4]. Функтор G сохраняет все пределы типа J, если он сохраняет пределы всех диаграмм F : J → C. Например, можно говорить, что G сохраняет произведения, уравнители и т. д. Непрерывный функтор — это функтор, сохраняющий все малые пределы. Аналогичные определения вводятся для копределов.
Важное свойство сопряжённых функторов — то, что каждый правый сопряженный функтор непрерывен и каждый левый сопряженный функтор конепрерывен[5].
Функтор G : C → D поднимает пределы для диаграммы F : J → C если из того, что (L, φ) — предел GF следует, что существует предел (L′, φ′) в F, такой что G(L′, φ′) = (L, φ)[6]. Функтор G поднимает пределы типа J, если он поднимает пределы для всех диаграмм типа J. Существуют двойственные определения для копределов.
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .