Дизъюнктное объединение (также несвязное объединение или несвязная сумма) — это измененная операция объединения множеств в теории множеств, которая, неформально говоря, заключается в объединении непересекающихся «копий» множеств. В частности дизъюнктное объединение двух конечных множеств, состоящих из и элементов, будет содержать ровно элементов, даже если сами множества пересекаются.
Пусть — семейство множеств, перечисленных индексами из . Тогда дизъюнктное объединение этого семейства есть множество
Элементы дизъюнктного объединения являются упорядоченными парами . Таким образом есть индекс, показывающий, из какого множества элемент вошёл в объединение. Каждое из множеств канонически вложено в дизъюнктное объединение как множество
При множества и не имеют общих элементов, даже если . В вырожденном случае, когда множества равны какому-то конкретному , дизъюнктное объединение есть декартово произведение множества и множества , то есть
Иногда можно встретить обозначение для дизъюнктного объединения двух множеств или следующее для семейства множеств:
Такая запись подразумевает, что мощность дизъюнктного объединения равна сумме мощностей множеств семейства. Для сравнения, декартово произведение имеет мощность, равную произведению мощностей.
В категории множеств дизъюнктным объединением является прямая сумма. Термин дизъюнктное объединение также используется в отношении объединения семейства попарно непересекающихся множеств. В этом случае дизъюнктное объединение обозначается, как обычное объединение множеств, совпадая с ним. Такое обозначение часто встречается в информатике. Более формально, если — это семейство множеств, то
есть дизъюнктное объединение в рассмотренном выше смысле тогда и только тогда, когда при любых и из выполняется следующее условие:
![]() |
Это заготовка статьи по теории множеств. Вы можете помочь проекту, дополнив её. |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .