Ричард Пэйрс Брент | |
---|---|
англ. Richard Peirce Brent | |
Дата рождения | 20 апреля 1946[1] (72 года) |
Место рождения | |
Страна | |
Научная сфера | Математика |
Место работы | |
Альма-матер | |
Учёная степень | докторская степень[d][1] |
Награды и премии | |
Сайт | wwwmaths.anu.edu.au/~bre… |
Ричард Пэйрс Брент (англ. Richard Peirce Brent, родился 20 апреля 1946, Мельбурн) — австралийский математик и специалист в области вычислительной техники, заслуженный профессор Австралийского национального университета и профессор университета Ньюкасла[en] в Австралии. С марта 2005 по март 2010 получал федеративную стипендию правительства Австралии, предназначенную для удержания в стране высококвалифицированных специалистов[2]. Работает в областях разработки вычислительных алгоритмов, теории чисел, факторизации, генерации псевдослучайных последовательностей, компьютерной архитектуры и анализа алгоритмов.
В 1970 году Брент свёл задачу поиска билинейного алгоритма для быстрого умножения матриц типа алгоритма Штрассена к решению системы кубических уравнений Брента. [3].
В 1973 году он опубликовал высокоточный комбинированный метод численного решения уравнений, который не требует вычисления производной, и впоследствии стал популярен как метод Брента[en].[4]
В 1975 году он и Юджин Саламин[en] независимо друг от друга на базе алгоритма Гаусса – Лежандра[en] разработали алгоритм Саламина - Брента, использованный для высокоточного вычисления числа . Брент доказал, что все элементарные функции, в частности, log(x) и sin(x) могут быть вычислены с заданной точностью за время того же порядка, что и число методом, использующим арифметико-геометрическое среднее Карла Фридриха Гаусса.[5]
В 1979 Брент показал, что первые 75 миллионов комплексных нолей Дзета функции Римана лежат на критической линии в согласии с гипотезой Римана.[6]
В 1980 году Брент и нобелевский лауреат Эдвин МакМилан нашли новый алгоритм для высокоточного вычисления постоянной Эйлера-Маскерони , используя функции Бесселя, и показали, что может быть рациональным числом p/q, только если целое q больше чем 1015000[7].
В 1980 Брент и Джон Поллард[en] факторизовали восьмое число Ферма, используя модифицированный Ρ-алгоритм Полларда.[8] Впоследствии Брент факторизовал десятое[9] и одиннадцатое числа Ферма, используя алгоритм факторизации с помощью эллиптических кривых Ленстры[en].
В 2002 году Брент, Сэмули Ларвала и Пол Цимерман обнаружили очень большие примитивные трёхчлены над полем Галуа GF(2):
Степень трёхчлена 6972593 является показателем степени в простом числе Мерсенна.[10]
В 2009 году Брент и Циммерман обнаружили примитивный трехчлен:
Число 43112609 также является показателем степени в простом числе Мерсенна.[11]
В 2010 году Брент и Циммерман опубликовали книгу об арифметических алгоритмах для современных компьютеров — «Modern Computer Arithmetic», (Cambridge University Press, 2010).
Брент является членом Ассоциации вычислительной техники, IEEE, SIAM[en] и Академии Наук Австралии. В 2005 году Академия Наук Австралии наградила Брента медалью Ханнана[en].
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .