WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте
Демонстрация в условиях невесомости, НАСА

Теоре́ма промежу́точной оси́, или теоре́ма те́ннисной раке́тки в классической механике — утверждение о неустойчивости вращения твёрдого тела относительно второй главной оси инерции. Является следствием законов классической механики, описывающих движение твёрдого тела с тремя различными главными моментами инерции. Проявление теоремы при вращении такого тела в невесомости часто называют эффектом Джанибекова, в честь советского космонавта Владимира Джанибекова, который заметил это явление 25 июня 1985 года, находясь на борту космической станции «Салют-7»[1]. Статья, объясняющая эффект, была опубликована в 1991 году[2]. В то же время сама теорема о неустойчивости вращения вокруг промежуточной оси инерции известна давно и доказывается в любом курсе классической механики[3]. Неустойчивость такого вращения часто показывается в лекционных экспериментах.

Теорема описывает следующий эффект: вращение объекта относительно главных осей с наибольшим и наименьшим моментами инерции является устойчивым, в то время как вращение вокруг главной оси с промежуточным моментом инерции (откуда и название теорема промежуточной оси) — нет. Джанибеков увидел это с гайкой-барашком: скрутив её в невесомости с длинной шпильки, он заметил, что она пролетает немного, разворачивается на 180°, потом, ещё немного пролетев, опять разворачивается.

На Земле этот эффект можно увидеть на таком эксперименте: возьмите за ручку теннисную ракетку и попытайтесь подбросить её в воздух так, чтобы она выполнила полный оборот вокруг оси, проходящей в плоскости ракетки перпендикулярно рукоятке, и поймайте за ручку. Почти во всех случаях ракетка выполнит пол-оборота вдоль продольной оси и будет «смотреть» на вас другой стороной. Если подбрасывать ракетку и закручивать её по другим осям, то ракетка сохранит свою ориентацию после полного оборота.

Эксперимент может быть выполнен с любым объектом, который имеет три различных момента инерции, например с книгой или пультом дистанционного управления. Эффект возникает, когда ось вращения немного отличается от второй главной (принципиальной) оси объекта; сопротивлением воздуха или гравитацией можно пренебречь[4].

Математическое обоснование

Теорема промежуточной оси может быть проанализирована с помощью уравнений Эйлера.

При свободном вращении они принимают следующую форму:

Здесь обозначают главные моменты инерции, и мы предполагаем, что . Угловые скорости трёх главных осей — , их производные по времени — .

Рассмотрим ситуацию, когда объект вращается вокруг оси с моментом инерции . Для определения характера равновесия, предположим, что существуют две малые начальные угловые скорости вдоль других двух осей. В результате, согласно уравнению (1), очень мала. Следовательно, зависимостью от времени можно пренебречь.

Теперь дифференцируем уравнение (2) и подставим из уравнения (3):

Обратим внимание, что знаки у и разные. Следовательно, изначально малая скорость будет оставаться малой и в дальнейшем. Дифференцируя уравнение (3), можно доказать и устойчивость относительно возмущения . Поскольку обе скорости и остаются малыми, малой остаётся и . Поэтому вращение вокруг оси 1 происходит с постоянной скоростью.

Аналогичное рассуждение показывает, что вращение вокруг оси с моментом инерции тоже устойчиво.

Теперь применим эти рассуждения к случаю вращения относительно оси с моментом инерции . В этот раз очень мала. Следовательно, зависимостью от времени можно пренебречь.

Теперь дифференцируем уравнение (1) и подставим из уравнения (3):

Обратим внимание, что знаки у и одинаковые. Следовательно, изначально малая скорость будет экспоненциально нарастать до тех пор, пока не перестанет быть малой и характер вращения вокруг оси 2 не изменится. Таким образом, даже небольшие возмущения вдоль других осей заставляют объект «переворачиваться».

Движение по сепаратрисе

Как и в случае с маятником движение по сепаратрисе (так называемое строго критическое движение) будет непериодическим. В бесконечно далёкий момент времени гайка Джанибекова начинает вращаться строго вокруг средней оси инерции. Затем она получает отклонение и совершает кувырок.[5]

Примечательно, что при таком движении в теле есть ось (так называемая Ось Галуа), которая вращается равномерно, а само тело совершает колебания вокруг этой оси с бесконечно большим периодом подобно математическому маятнику. Ось Галуа фиксирована в твёрдом теле и располагается в плоскости, ортогональной оси с промежуточным моментом инерции. Точнее, она располагается перпендикулярно круговым сечениям эллипсоида Мак-Куллага[en].[6]

См. также

Примечания

  1. Эффект Джанибекова - Форумы CNews (недоступная ссылка). live.cnews.ru. Проверено 26 марта 2016. Архивировано 16 августа 2016 года.
  2. Mark S. Ashbaugh, Carmen C. Chicone, Richard H. Cushman (1991). “The Twisting Tennis Racket”. Journal of Dynamics and Differential Equations. 3 (1): 67—85. DOI:10.1007/BF01049489.
  3. См., например: Сивухин Д. В. § 53, Тензор и эллипсоид инерции; § 54, Вращение твердого тела по инерции вокруг неподвижной точки // Общий курс физики. М.: Наука, 1979. — Т. I. Механика. — С. 297—300. — 520 с.
  4. Mark Levi. 6. The tennis racket paradox // Classical Mechanics with Calculus of Variations and Optimal Control: An Intuitive Introduction. — American Mathematical Society, 2014. — P. 151-152.
  5. An animation of the critical motion of Dzhanibekov's wingnut. YouTube. Проверено 30 октября 2018.
  6. Adlaj S. Torque free motion of a rigid body: from Feynman wobbling plate to Dzhanibekov flipping wingnut. — 2017.

Ссылки

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2024
WikiSort.ru - проект по пересортировке и дополнению контента Википедии