В теории чисел частным Ферма для целого a ≥ 2 по простой базе p называется дробь[1][2][3][4]
Если a взаимно просто с p, то малая теорема Ферма утверждает, что qp(a) будет целым. Частное названо в честь Пьера Ферма.
Из определения очевидно, что
В 1850 году Готтхольд Эйзенштейн (Gotthold Eisenstein) доказал, что если a и b оба взаимно просты с p, то:[5]
Эйзенштейн сравнивал два первых соотношения со свойствами логарифмов.
Из этих свойст вытекает
В 1895 году Дмитрий Мириманов (Dmitry Mirimanoff) указал на то, что последовательное применение правил Айзенштейна ведет к[6]
Отсюда следует, что[7]
Айзенштейн обнаружил, что частное Ферма по основанию 2 может быть выражено как сумма обратных величин к числам, находящимися в нижней половине интервала {1, p − 1}:
Более поздние авторы показали, что число элементов в таком представлении может быть уменьшено до с 1/2 до 1/4, 1/5, или даже 1/6:
Серии Айзенштейна имеют увеличивающуюся сложность отношений с частным Ферма по другим базисам, несколько первых примеров:
Если qp(a) ≡ 0 (mod p), то ap−1 ≡ 1 (mod p2). Простые, для которых это верно для a = 2 называются простыми Вифериха. В более общем случае они называются простыми числами Вифериха по простому основанию a. Известные решения qp(a) ≡ 0 (mod p) для малых a :[2]
a | p | последовательность OEIS |
---|---|---|
2 | 1093, 3511 | A001220 |
3 | 11, 1006003 | A014127 |
5 | 2, 20771, 40487, 53471161, 1645333507, 6692367337, 188748146801 | A123692 |
7 | 5, 491531 | A123693 |
11 | 71 | |
13 | 2, 863, 1747591 | A128667 |
17 | 2, 3, 46021, 48947, 478225523351 | A128668 |
19 | 3, 7, 13, 43, 137, 63061489 | A090968 |
23 | 13, 2481757, 13703077, 15546404183, 2549536629329 | A128669 |
Наименьшее решение qp(a) ≡ 0 (mod p) с a = n-м простое
Пара (p,r) простых чисел, такая, что qp(r) ≡ 0 (mod p) и qr(p) ≡ 0 (mod r) называется парой Вифериха.
Для улучшения этой статьи желательно: |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .