Цепо́чка То́ды (англ. Toda's chain) — система дискретных нелинейных уравнений, описывающих динамику взаимосвязанных нелинейных осцилляторов. Имеет важное значение в теории колебаний кристаллических решёток.
Система в общем случае имеет вид[1]:
где имеет смысл величины отклонения n-го осциллятора от положения равновесия, а — нелинейная функция, имеющая смысл возвращающей силы, действующей на i-ый осциллятор. Точки означают взятие операции дифференцирования.
Впервые предложена и проанализирована для случая Морикадзу Тодой в 1967 году[2][3].
Уравнение цепочки Тоды удобно анализировать в эквивалентной форме следующего вида
Можно показать, что уравнения, описывающие динамику цепочки Тоды, имеют решения в виде стационарных бегущих волн, имеющих вид
где функция в случае, если , удовлетворяет уравнению
Решение этого уравнения выражается через эллиптические функции Якоби:
где
Здесь K — полный эллиптический интеграл первого рода. Связь коэффициентов b и с параметрами , и m достаточно сложна, однако упрощается в предельных случаях.
Функция находится из соотношения
Особым решением является уединённое локализованное решение солитонного типа. Оно может быть получено в пределе , при одновременном выполнении условий:
В этом случае эллиптические функции переходят в гиперболические, и решение принимает вид
М. Тода в своих работах показал, что эти солитоны после взаимодействия друг с другом не изменяют первоначальную форму. Любое начальное распределение в процессе эволюции разделяется на множество солитонов. Точное решение этой задачи было получено методом обратной задачи рассеяния[4][5].
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .