Фактор графа G — это остовный подграф, то есть подграф, имеющий те же вершины, что и граф G. k-фактор графа — это остовный k-регулярный подграф, а k-факторизация разбивает рёбра графа на непересекающиеся k-факторы. Говорят, что граф G k-факторизуем, если он позволяет k-разбиение. В частности, множество рёбер 1-фактора — это совершенное паросочетание, а 1-разложение k-регулярного графа — это рёберная раскраска k цветами. 2-фактор — это набор циклов, которые покрывают все вершины графа.
Если граф 1-факторизуем (то есть имеет 1-факторизацию), то он должен быть регулярным графом. Однако не все регулярные графы являются 1-факторизуемыми. k-регулярный граф является 1-факторизуемым, если его хроматический индекс равен k. Примеры таких графов:
1-факторизация полного графа соответствует разбиению на пары в круговых турнирах. 1-факторизация полных графов является специальным случаем теоремы Бараньяи[en] относительно 1-факторизации полных гиперграфов.
Один из способов построения 1-факторизации полного графа помещает все вершины, кроме одной, на окружности, образуя правильный многоугольник, оставшаяся же вершина помещается в центр окружности. При этом расположении вершин процесс построения 1-фактора заключается в выборе ребра e, соединяющего центральную вершину с одной из вершин на окружности, затем выбираются все рёбра, перпендикулярные ребру e. 1-факторы, построенные таким образом, образуют 1-факторизацию графа.
Число различных 1-факторизаций K2, K4, K6, K8, … равно 1, 1, 6, 6240, 1225566720, 252282619805368320, 98758655816833727741338583040, … (последовательность A000438 в OEIS).
Пусть G — k-регулярный граф с 2n вершинами. Если k достаточно велико, известно, что G должен быть 1-факторизуем:
Гипотеза об 1-факторизации[5] является давно выдвинутой гипотезой, утверждающей, что значение k ≈ n достаточно велико. Точная формулировка:
Гипотеза сильного заполнения[en] заключает в себе гипотезу об 1-факторизации.
Совершенная пара 1-факторизаций — это пара 1-факторов, объединение которых даёт гамильтонов цикл.
Совершенная 1-факторизация (P1F) графа — это 1-факторизация, имеющая свойство, что любая пара 1-факторов является совершенной парой. Совершенная 1-факторизация не следует путать с совершенным паросочетанием (которое также называют 1-фактором).
В 1964 году Антон Котциг высказал предположение, что любой полный граф K2n, где n ≥ 2, имеет совершенную 1-факторизацию. Известно, что следующие графы имеют совершенные 1-факторизации[6]:
Если полный граф Kn + 1 имеет совершенную 1-факторизацию, то полный двудольный граф Kn,n также имеет совершенную 1-факторизацию[7].
Если граф 2-факторизуем, то он должен быть 2k-регулярным для некоторого целого k. Юлиус Петерсен показал в 1891, что это необходимое условие является также достаточным — любой 2k-регулярный граф является 2-факторизуемым[8].
Если связный граф является 2k-регулярным и имеет чётное число рёбер, он также может быть k-факторизуем путём выбора двух факторов, являющихся чередующимися рёбрами эйлерова цикла[9]. Это относится только к связным графам, несвязные контрпримеры содержат несвязное объединение нечётных циклов или копий графа K2k+1.
Для улучшения этой статьи желательно: |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .