WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте
Тиоредоксин
Доступные структуры
PDBПоиск ортологов: PDBe RCSB
Идентификаторы
Символы TXN, TRDX, TRX, TRX1, thioredoxin
Внешние IDs OMIM: 187700 MGI: 98874 HomoloGene: 128202 GeneCards: 7295
Профиль экспрессии РНК
Больше информации
Ортологи
Виды Человек Мышь
Entrez
Ensembl
UniProt
RefSeq (мРНК)

NM_003329
NM_001244938

NM_011660

RefSeq (белок)

NP_001231867
NP_003320

NP_035790

Локус (UCSC) Chr 9: 110.24 – 110.26 Mb Chr 4: 57.94 – 57.96 Mb
Поиск PubMed
Викиданные
Просмотр/Править (Человек)Просмотр/Править (Мышь)

Тиоредоксины — семейство маленьких белков, представленный во всех организмах от архей до человека[1][2]. Они участвуют во многих важных биологических процессах, включая определение окислительно-восстановительного потенциала клетки и передачу сигнала. У человека тиоредоксин кодируется геном TXN[3]. Мутации, приводящие к потере функциональности даже одного аллеля этого гена, приводят к смерти на стадии четырёхклеточного эмбриона. Тиоредоксин играет значительную роль в организме человека, хотя и не до конца ясно какую именно. Всё чаще и чаще его возможные функции связывают с действием лекарств и противодействием активным формам кислорода. У растений тиоредоксины регулируют целый спектр жизненно важных функций, начиная от фотосинтеза и роста и заканчивая цветением, развитием и прорастанием семян. А совсем недавно выяснилось, что они также участвует в межклеточном взаимодействии и обмене информацией между растительными клетками[4].

Функции

Тиоредоксины представляют собой белки с массой около 12 кДа. Их отличительная особенность — наличие двух расположенных рядом остатков остатков цистеина, заключённых в мотив типа CXXC, где С — цистеин, а Х — любая, как правило гидрофобная, аминокислота. Ещё одна отличительной черта всех тиоредоксинов — специфическая третичная структура, которая называется тиоредоксиновой укладкой.

Главной частью белка является дисульфидная связь. При помощи этой неё он может восстанавливать дисульфидные связи других белков, разрушая в них дисульфидные мостики. Таким образом он регулирует активность некоторых ферментов. Кроме того, восстанавливая дисульфидные связи, тиоредоксин поставляет электроны, которые затем используются во многих биохимических процессах клетки. Например, вместе с глутатионом он поставляет электроны для рибонуклеотидредуктазы, то есть участвует в синтезе дезоксинуктлеотидов, и ФАФС-редуктазы. В этом плане, его функция сходна с таковой у глутатиона и частично с ней перекрывается. Так, тиоредоксин является сильным антиоксидантом: вместе с глутатионовой системой тиоредоксиновая система участвует в обезвреживание активных форм кислорода, передовая электроны различным пероксидазам[5]. Исследования показали, что тиоредоксин взаимодействует с рибонуклеазой, хориогонадотропинами, факторами коагуляции, глюкокортикоидным рецептором и инсулином. Реакцию тиоредоксина с инсулином традиционно используют для определения активности тиоредоксина[6]. Было показано, что тиоредоксин способен стимулировать связывание факторов транскрипции с ДНК. Эти факторы были определены как ядерный фактор NF-κB, который является важным фактором в клеточной реакции на окислительный стресс, апоптоз и процессы опухолеобразования.

Восстановление тиоредоксина осуществляет специальный флавопротеин тиоредоксин редуктаза, который использует для этого одну молекулу НАДФН[7]. Глутаредоксины во многом сходны по функциям с тиоредоксинами, но вместо специфической редуктазы они восстанавливаются глутатионом.

↔ 2 H+ + 2 e- +
Восстановленный тиоредоксин Окисленный тиоредоксин

Способность тиоредоксинов противостоять окислительному стрессу была продемонстрирована в эксперименте с трансгенными мышами у которых была повышенная экспрессия тиоредоксина. Трансгенные мыши лучше сопротивлялись воспалительным реакциям и жили на 35 % дольше[8]. Такие данные служат существенным аргументом в пользу свободнорадикальной теории старения. Тем не менее, результаты исследования нельзя считать достоверными, поскольку контрольная группа мышей жила значительно меньше обычного, что могло создать иллюзию увеличения продолжительности жизни у трансгенных мышей[9].

У растений существует очень сложная система тиоредоксинов, состоящая из шести хорошо различимых типов (тиоредоксины f, m, x, y, h, и o). Они расположены в разных частях клетки и участвуют в массе различных процессов. Именно действие тиоредоксинов лежит в основе светозависимой активации ферментов. На свету, в результате совместного действия фотосистемы I и фотосистемы II образуется большое количество восстановительных эквивалентов — ферредоксинов. По достижении определённой концентрации ферредоксина, за счёт действия Фермент ферредоксин-тиоредоксинредуктазы происходит восстановление тиоредоксина, который в свою очередь активирует ферменты, восстанавливая дисульфидные связи. Таким путём активируется по крайней мере пять ключевых ферментов цикла Кальвина, а также белок-активаза Рубиско, альтернативная оксидаза митохондрий и терминальная оксидаза хлоропластов. Механизм активации через тиоредоксин позволяет регулировать активность ферментов не только в зависимости от соотношения НАДФН/НАДФ+, но и одновременно от интенсивности света[10]. В 2010 году была открыта необычная способность тиоредоксинов перемещаться из клетки в клетку. Такая способность лежит в основе нового, ранее не известного для растений, способа межклеточной коммуникации[4].

Взаимодействия

Было показано, что тиоредоксин взаимодействует со следующими белками:

См. также

Ссылки

Примечания

  1. Holmgren A (1989). “Thioredoxin and glutaredoxin systems” (PDF). J Biol Chem. 264 (24): 13963—6. PMID 2668278.
  2. Nordberg J, Arnér ES (2001). “Reactive oxygen species, antioxidants, and the mammalian thioredoxin system”. Free Radic Biol Med. 31 (11): 1287—312. DOI:10.1016/S0891-5849(01)00724-9. PMID 11728801.
  3. .Wollman EE, d'Auriol L, Rimsky L, Shaw A, Jacquot JP, Wingfield P, Graber P, Dessarps F, Robin P, Galibert F (October 1988). “Cloning and expression of a cDNA for human thioredoxin”. J. Biol. Chem. 263 (30): 15506—12. PMID 3170595.
  4. 1 2 Meng L, Wong JH, Feldman LJ, Lemaux PG, Buchanan BB (2010). “A membrane-associated thioredoxin required for plant growth moves from cell to cell, suggestive of a role in intercellular communication”. Proceedings of the National Academy of Sciences of the USA. 107 (8): 3900—5. DOI:10.1073/pnas.0913759107. PMC 2840455. PMID 20133584.
  5. Arnér ES, Holmgren A (2000). “Physiological functions of thioredoxin and thioredoxin reductase”. Eur J Biochem. 267 (20): 6102—9. DOI:10.1046/j.1432-1327.2000.01701.x. PMID 11012661.
  6. Entrez Gene: TXN thioredoxin.
  7. Mustacich D, Powis G (February 2000). “Thioredoxin reductase”. Biochem J. 346 (Pt 1): 1—8. DOI:10.1042/0264-6021:3460001. PMC 1220815. PMID 10657232.
  8. Yoshida T, Nakamura H, Masutani H, Yodoi J (2005). “The involvement of thioredoxin and thioredoxin binding protein-2 on cellular proliferation and aging process”. Annals of the New York Academy of Sciences. 1055: 1—12. DOI:10.1196/annals.1323.002. PMID 16387713.
  9. Muller, F.L., Lustgarten, M.S., Jang, Y., Richardson, A. & Van Remmen, H. Trends in oxidative aging theories. Free Radic Biol Med 43, 477—503 (2007).
  10. Ермаков, 2005, с. 195.
  11. Liu Y, Min W (June 2002). “Thioredoxin promotes ASK1 ubiquitination and degradation to inhibit ASK1-mediated apoptosis in a redox activity-independent manner”. Circ. Res. 90 (12): 1259–66. DOI:10.1161/01.res.0000022160.64355.62. PMID 12089063.
  12. Morita K, Saitoh M, Tobiume K, Matsuura H, Enomoto S, Nishitoh H, Ichijo H (November 2001). “Negative feedback regulation of ASK1 by protein phosphatase 5 (PP5) in response to oxidative stress”. EMBO J. 20 (21): 6028–36. DOI:10.1093/emboj/20.21.6028. PMC 125685. PMID 11689443.
  13. Saitoh M, Nishitoh H, Fujii M, Takeda K, Tobiume K, Sawada Y, Kawabata M, Miyazono K, Ichijo H (May 1998). “Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1”. EMBO J. 17 (9): 2596–606. DOI:10.1093/emboj/17.9.2596. PMC 1170601. PMID 9564042.
  14. Matsumoto K, Masutani H, Nishiyama A, Hashimoto S, Gon Y, Horie T, Yodoi J (July 2002). “C-propeptide region of human pro alpha 1 type 1 collagen interacts with thioredoxin”. Biochem. Biophys. Res. Commun. 295 (3): 663–7. DOI:10.1016/s0006-291x(02)00727-1. PMID 12099690.
  15. Makino Y, Yoshikawa N, Okamoto K, Hirota K, Yodoi J, Makino I, Tanaka H (January 1999). “Direct association with thioredoxin allows redox regulation of glucocorticoid receptor function”. J. Biol. Chem. 274 (5): 3182–8. DOI:10.1074/jbc.274.5.3182. PMID 9915858.
  16. Li X, Luo Y, Yu L, Lin Y, Luo D, Zhang H, He Y, Kim YO, Kim Y, Tang S, Min W (April 2008). “SENP1 mediates TNF-induced desumoylation and cytoplasmic translocation of HIPK1 to enhance ASK1-dependent apoptosis”. Cell Death Differ. 15 (4): 739–50. DOI:10.1038/sj.cdd.4402303. PMID 18219322.
  17. Nishiyama A, Matsui M, Iwata S, Hirota K, Masutani H, Nakamura H, Takagi Y, Sono H, Gon Y, Yodoi J (July 1999). “Identification of thioredoxin-binding protein-2/vitamin D(3) up-regulated protein 1 as a negative regulator of thioredoxin function and expression”. J. Biol. Chem. 274 (31): 21645–50. DOI:10.1074/jbc.274.31.21645. PMID 10419473.

Литература

  • Физиология растений / Под ред. И. П. Ермакова. М.: Академия, 2005. — 634 с.

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2024
WikiSort.ru - проект по пересортировке и дополнению контента Википедии