WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Теория интегрируемых систем — раздел математической физики, изучающий недиссипативные решения дифференциальных уравнений, в том числе уравнений в частных производных. Такие системы имеют соответствующие высшие симметрии.

С-интегрируемые системы

Под С-интегрируемыми понимают такие системы, решения которых могут быть представлены в явном виде не сложнее, чем через квадратуры — интегралы, зависящие от начальных данных задачи.

Примеры

Гамильтоновы интегрируемые системы и метод обратной задачи рассеяния

Метод обратной задачи рассеяния подразумевает, что уравнение в частных производных можно представить в виде пары Лакса — системы двух линейных операторов, условием совместности которых будет рассматриваемая система.

Примеры

есть условие совместности системы

Построение решений

Интегрируемые системы и симметрии

Интегрируемые цепочки

Примеры

См. также

Примечания

    Литература

    • Захаров В.Е., Манаков С.В., Новиков С.П., Питаевский Л.П. Теория солитонов: метод обратной задачи. — 1980. — 319 с.
    • Шрёдингера уравнение нелинейное — статья из Физической энциклопедии
    • Дж. Уизем. Линейные и нелинейные волны. — Мир, 1977. — С. 574—578. — 622 с.
    • Абловиц М., Сигур Х. Солитоны и метод обратной задачи. - М., 1987.
    • Лэм Дж., Введение в теорию солитонов, пер. с англ., М.,1983.
    • Л. А. Тахтаджян, Л. Д. Фаддеев — Гамильтонов подход в теории солитонов.- М.; Наука, 1986, 527 стр.

    Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

    Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

    Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




    Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

    Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

    2019-2025
    WikiSort.ru - проект по пересортировке и дополнению контента Википедии