WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Теорема Пайерлса - теорема квантовой статистической физики. Сформулирована и доказана Р. Пайерлсом в 1930 году[1].

Формулировка

Пусть есть эрмитов оператор Гамильтона квантовой системы, есть произвольная ортонормированная совокупность волновых функций системы, - статистическая сумма. Тогда справедливо неравенство:

Равенство имеет место в том случае, когда есть полная система собственных функций оператора .

Доказательство

Пусть есть полная система ортонормированных волновых функций, удовлетворяющих граничным условиям и требованиям симметрии задачи. Тогда статистическая сумма удовлетворяет тождеству

.

Перепишем доказываемое равенство в виде:

,

где

Пусть есть полная система ортонормированных собственных функций оператора :

.

Поскольку оператор эрмитов, собственные значения действительны. Существует унитарное преобразование , переводящее в :

,

где - совокупность комплексных чисел, удовлетворяющих условию:

.

Поэтому

.

Справедливо уравнение:

.

Для любого следующие выражения удовлетворяют требованиям леммы:

,

.

В уравнении каждый член суммы имеет вид и согласно лемме положителен. Поэтому и вся сумма , что завершает доказательство теоремы.

Лемма

Пусть есть совокупность действительных чисел, есть совокупность действительных чисел, удовлетворяющих условиям и , . Обозначим по определению для любой функции . Тогда выполняется неравенство:

.

По теореме о среднем значении:

, где - фиксированное действительное число.

Используя условие получаем:

.

Второй член здесь не отрицателен, потому что и .

Лемма доказана.

Примечания

  1. Peierls R. E. Phys. Rev., 54, 918 (1938)

Литература

  • Хуанг К. Статистическая механика. — М.: Мир, 1966. — С. 520.

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии