Теорема Минковского о выпуклом теле — одна из теорем геометрии чисел, послужившая основой выделения геометрии чисел в раздел теории чисел. Установлена Германом Минковским в 1896.
Пусть — замкнутое выпуклое тело, симметричное относительно начала координат , -мерного евклидова пространства, имеющее объём . Тогда в найдётся целочисленная точка, отличная от .
Ниже приведено доказательство теоремы Минковского для частного случая L = ℤ2. Оно может быть обобщено на произвольную размерность.
Рассмотрим отображение
Интуитивно, это отображение нарезает тело на квадраты размером 2 на 2, которые накладывает один поверх другого. Очевидно, что площадь f(S) ≤ 4. Если бы отображение f было инъективно, то части S, вырезанные квадратами, совмещались бы без перекрытия. Так как f сохраняет локальные площади фрагментов, то это свойство непересечения сделало бы отображение f сохраняющим площадь всего S, так что площадь f(S) была бы такой же, как у S - численно больше 4. Раз это не так, то f не инъективно, а следовательно, f(p1) = f(p2) для некоей пары точек p1, p2 ∈ S. Более того, по определению f мы знаем, что p2 = p1 + (2i, 2j) для неких целочисленных i и j, где хотя бы одно из них не равно нулю.
Тогда, так как S симметрично относительно начала координат, −p1 также входит в S. Так как S выпукло, то отрезок между −p1 и p2 полностью лежит в S. Середина этого отрезка
лежит в S. (i,j) является целочисленной точкой и не является началом координат (i и j не могут оба быть равными нулю). Таким образом, мы нашли искомую точку.
Для улучшения этой статьи по математике желательно: |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .