WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Теорема Дирихле о диофантовых приближениях гласит, что[1]

Для любого вещественного числа и натурального Q существуют целые p и q, , удовлетворяющие условию

Она является следствием принципа Дирихле. Теорема была доказана Дирихле в 1842 году.

Некоторые следствия

Пусть — иррациональное число. Тогда существует бесконечное множество несократимых дробей неограниченно близких к в следующем смысле[1]:

Практическое построение таких приближений несложно выполнить с помощью цепных дробей.

Вариации и обобщения

Принцип Дирихле позволяет доказать и более общую теорему:

для любых вещественных чисел и натурального существуют такие целые , что

Примечания

Литература

  • Нестеренко Ю. В. Теория чисел: учебник для студ. высш. учеб. заведений. М.: Издательский центр "Академия", 2008. — 272 с. ISBN 978-5-7695-4646-4.

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии