WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Теорема Гудстейна — теорема математической логики о натуральных числах, доказанная Рубеном Гудстейном[1]. Утверждает, что все последовательности Гудстейна заканчиваются нулём. Как показали Л. Кирби и Джефф Парис[2][3], теорема Гудстейна эквивалентна утверждению о непротиворечивости арифметики Пеано , а поэтому, в силу второй теоремы Гёделя и непротиворечивости , теорема Гудстейна недоказуема в (но может быть доказана, например, в арифметике второго порядка).

Последовательность Гудстейна

Рассмотрим представление целых положительных чисел в виде суммы степенных членов с одинаковым основанием.

Например, запишем число 581, используя основание 2:

Разложим показатели степени по тому же принципу:

Подобное разложение можно получить для любого числа.

Будем рекурсивно применять к получившемуся выражению следующую операцию:

  1. увеличение «основания» на 1 и вычитание 1 из самого числа.

Таким образом, после применения первой операции (меняем 2 на 3 и вычитаем единицу из числа) будет получено выражение

После второй (меняем 3 на 4 и вычитаем единицу из числа):

После третьей (меняем 4 на 5 и вычитаем единицу из числа):

Теорема Гудстейна утверждает, что в конце концов всегда будет получен 0.

Верно и более сильное утверждение: Если прибавлять вместо 1 какое-то произвольное число к основанию и его же отнимать от самого числа, то всегда будет получаться 0 даже в том случае, когда показатели степеней не разложены изначально по основанию 2.

Последнее основание в качестве дискретной функции от исходного числа растёт очень быстро, и уже при оно достигает значения . При оно всегда будет числом Сабита и числом Вудала[источник не указан 130 дней].

Пример

Рассмотрим пример последовательности Гудстейна для чисел 1, 2 и 3.

Число Основание Запись Значение
1211
31 - 10
22212
331 − 12
42 - 11
51 − 10
3221 + 13
3(31 + 1) − 1 = 313
441 − 1 = 1 + 1 + 13
5(1 + 1 + 1) − 1 = 1 + 12
6(1 + 1) − 1 = 11
71 − 1 = 00

Примечания

  1. Goodstein, R. (1944), "On the restricted ordinal theorem", Journal of Symbolic Logic Т. 9: 33–41, <https://www.jstor.org/pss/2268019>
  2. Kirby, L. & Paris, J. (1982), "Accessible independence results for Peano arithmetic", Bulletin London Mathematical Society Т. 14: 285–293, <http://reference.kfupm.edu.sa/content/a/c/accessible_independence_results_for_pean_59864.pdf>
  3. Роджер Пенроуз. Большое малое и человеческий разум. Приложение 1.

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2024
WikiSort.ru - проект по пересортировке и дополнению контента Википедии