WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Если задан некоторый неприводимый многочлен над кольцом и выбран некоторый его корень в расширении , то сопряженным корнем для данного корня многочлена называется любой корень многочлена (иногда, в зависимости от контекста, под сопряженным корнем понимается любой другой корень данного многочлена). Число сопряженных корней неприводимого многочлена равно степени многочлена . Также говорят, что элементы являются сопряженными, если они являются корнями некоторого неприводимого многочлена

Свойства

  • Теорема Виета задает алгебраических соотношений между сопряженными корнями многочлена.
  • Если  — поле, то Группа Галуа изоморфна некоторой подгруппе группы перестановок, действующей на множестве сопряженных корней многочлена. Отображение корня в ему сопряженный задает автоморфизм расширения основного поля.

Примеры

  • Если  — многочлен 2-й степени, то сопряженные корни имеют вид .
  • Корни из единицы n-й степени являются сопряженными корнями многочлена над

См. также


Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии